DOI QR코드

DOI QR Code

TOWARDS UNIQUENESS OF MPR, THE MALVENUTO-POITIER-REUTENAUER HOPF ALGEBRA OF PERMUTATIONS

  • Received : 2006.06.27
  • Accepted : 2006.08.05
  • Published : 2007.06.25

Abstract

A very important Hopf algebra is the graded Hopf algebra Symm of symmetric functions. It can be characterized as the unique graded positive selfdual Hopf algebra with orthonormal graded distinguished basis and just one primitive element from the distinguished basis. This result is due to Andrei Zelevinsky. A noncommutative graded Hopf algebra of this type cannot exist. But there is a most important positive graded Hopf algebra with distinguished basis that is noncommutative and that is twisted selfdual, the Malvenuto-Poirier-Reutenauer Hopf algebra of permutations. Thus the question arises whether there is a corresponding uniqueness theorem for MPR. This prepreprint records initial investigations in this direction and proves that uniquenees holds up to and including the degree 4 which has rank 24.

Keywords

References

  1. Marcelo Aguiar, Nantel Bergeron, Frank Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Dept. Math., Texas A&M Univ., 2004.
  2. Marcelo Aguiar, Frank Sottile, Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Preprint, Dept. Math. Texas A&M University, Dept. Math., University of Massachusetts at Amherst., 2002.
  3. Marcelo Aguiar, Frank Sottile, Structure of the Loday-Ronco Hopf algebra of trees, Preprint, Dept. Math. Texas A&M University, Dept. Math., University of Massachusetts at Amherst., 2004.
  4. Nantel Bergeron, Florent Hivert, Jean-Yves Thibon, The peak algebra and the Hecke-Clifford algebras at q = 0, Preprint, Inst. Gaspard Monge, Univ. Marnela-Vallee, 2003.
  5. Anders Bjorner, Orderings of Coxeter groups. In: Curtis Greene (ed.), Combi­natorics and algebra, Amer. Math. Soc, 1984, 175-196.
  6. Dieter Blessenohl, Manfred Schocker, Noncommutative character theory of the symmetric group, Imperial college press, 2005.
  7. Christian Brouder, QED Hopf algebras on planar binary trees, Preprint, Lab. Mineralogie et Cristallographie, Univ. Paris 6,7, 2001.
  8. Alain Connes, Dirk Kreimer, Hopf algebras, renormalization and noncommuta­tive geometry, Preprint, IHES, Bures sur Yvette, France, 1998.
  9. Gerard Duchamp, Florent Hivert, Jean-Yves Thibon, Noncommutative symmet­ric functions VI: free quasisymmetric functions and related algebras, Preprint, Inst. Gaspard Monge, Univ. de Marne-La-Vallee, 2003.
  10. Gerrd Duchamp, Alexander Klyachko, Daniel Krob, Jean-Yves Thibon, Non­commutative symmetric functions III: deformations of Cauchy and convolution algebras, Preprint, Universite la Marne-la-Vallee, 1996.
  11. Hector Figueroa, Jose M. Gracia-Bondia, Combinatorial Hopf algebras in quan­tum field theory I, Preprint, Dept. Mat. Univ. Costa Rica, 2004.
  12. L. Foissy, Les algebres de Hopf des arbres enracines decores, Preprint, Lab. Math. Univ. Reims, 2001.
  13. Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math. 112(1995), 218-348. https://doi.org/10.1006/aima.1995.1032
  14. Michiel Hazewinkel, The algebra of quasi-symmetric functions is free over the integers, Advances in Mathematics 164(2001), 283-300. https://doi.org/10.1006/aima.2001.2017
  15. Michiel Hazewinkel, The primitives of the Hopf algebra of noncommutative sym­metric functions over the integers, Preprint, CWI, 2001. Submitted Ann. of Math.
  16. Michiel Hazewinkel, Cofree coalgebras and multivariate recursiveness, J. pure and appied Algebra 183(2003), 61-103. Revised version of a 1999 preprint. https://doi.org/10.1016/S0022-4049(03)00013-6
  17. Michiel Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions, Acta Appl. Math. 75(2003), 55-83. https://doi.org/10.1023/A:1022323609001
  18. Michiel Hazewinkel, Word Hopf algebras. In: Ki-Bong Nam a.o. (ed.), Advances in algebra towards the millennium problems, SAS Int. Publ., 2004, 59-84. arXiv: math.CO/0410471.
  19. Michiel Hazewinkel, Hopf algebras of endomorphisms of Hopf algebras, 2004. To appear. arXiv: math.QA/0410364.
  20. Michiel Hazewinkel, Rigidity of the Malvenuto-Poirier-Reutenauer Hopf algebra of permutations, Preprint, CWI, 2005.
  21. Michiel Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions II, Acta Appl. Math. 85(2005), 319-340. https://doi.org/10.1007/s10440-004-5635-z
  22. Corrado De Concini, Freddy van Oystaeyen, Nikolai Vavilov, Anatoly Yakovlev (eds.), Noncommutative algebra and geometry, Chapman & Hall / CRC, 2005, 126-147.
  23. Michiel Hazewinkel, Nadia Gubareni, Volodymir Kirichenko, Algebras, rings, and modules. Volume 2, KAP, 2005, to appear.
  24. F. Hivert, J.-C. Novelli, J.-Y. Thibon, The algebra of binary search trees, Preprint, Inst. Gaspard Monge, Univ. Marne-la-Vallee, 2004.
  25. Florent Hivert, Hecke algebras, difference operators and quasi symmetic func­tions, Adv. Math. 155(2000), 181-238. https://doi.org/10.1006/aima.1999.1901
  26. Florent Hivert, Alain Lascoux, Jean-Yves Thibon, Noncommutative symmetric functions and quasisymmetric functions with two and more parameters, Preprint, Inst. Gaspard Monge, Univ. Marne-la-Vallee, 2001.
  27. Dirk Kreimer, Knots and Feynman diagrams, Cambridge Univ. Press, 2000.
  28. D. Krob, B. Leclerc, J.-Y. Thibon, Noncommutative symmetric functions II: transformations of alphabeths, Int. J. Algebra and Computation 7:2(1997), 181-264. https://doi.org/10.1142/S0218196797000113
  29. D. Krob, J.-Y. Thibon, Noncommutative symmetric functions V: a degenerate version of $U_q(gl_N)$, Int. J. Algebra and Computation 9:3&4(1997), 405-430.
  30. Daniel Krob, Jean-Yves Thibon, Noncommutative symmetric functions IV: quan­tum linear groups and Heche algebras at q = 0, J. of algebraic combinatorics 6(1997), 339-376. https://doi.org/10.1023/A:1008673127310
  31. A. Liulevicius, Arrows, symmetries and representation rings, J. pure and appl. Algebra 19(1980), 259-273. https://doi.org/10.1016/0022-4049(80)90103-6
  32. Jean-Louis Loday, Maria O. Ronco, Hopf algebra of planar binary trees, Adv. Math. 139(1998), 293-309. https://doi.org/10.1006/aima.1998.1759
  33. Jean-Louis Loday, Maria O. Ronco, Order structure on the algebra of permutations of planar binary trees, J. of algebraic Combinatorics 15(2002), 253-270. https://doi.org/10.1023/A:1015064508594
  34. C. Malvenuto, Chr. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. of Algebra 177(1994), 967-982. https://doi.org/10.1006/jabr.1995.1336
  35. Dominique Manchon, Hopf algebras, from basics to applications to renormalization, Preprint, Univ. Blaise Pascal, Clermont-Ferrand, 2004.
  36. G. Pinter, The Hopf algebra structure of Connes and Kreimer in Epstein-Glaser renormalization, Lett. Math. Phys. 54:3(2000), 227-233. https://doi.org/10.1023/A:1010851025400
  37. Stephane Poirier, Christophe Reutenauer, Algebres de Hopf de tableaux, Ann. Sci. Math. Quebec 19:1(1995), 79-90.
  38. C. Schensted, Longest increasing and decreasing subsequences, Canadian J. Math. 13(1961), 179-191. https://doi.org/10.4153/CJM-1961-015-3
  39. Steven Shnider, Shlomo Sternberg, Quantum groups. From coalgebras to Drinfeld algebras, International Press, 1994.
  40. John R. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349:2(1997), 763-788. https://doi.org/10.1090/S0002-9947-97-01804-7
  41. J.-Y. Thibon, B.-C.-V. Ung, Quantum quasisymmetric functions and Hecke al­gebras, J. Phys. A: Math. Gen. 29(1996), 7337-7348. https://doi.org/10.1088/0305-4470/29/22/027
  42. Pepijn van der Laan, Some Hopf algebras of trees, Preprint, Math. Inst., Univ. of Utrecht, 2002.
  43. Andrey V. Zelevinsky, Representations of finite classical groups, Springer, 1981, 184 pp.