• Title/Summary/Keyword: aldehydes

Search Result 776, Processing Time 0.025 seconds

Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube (Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석)

  • Seo, Yong Soo;Lee, Jea Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.244-252
    • /
    • 2010
  • The objective of this study is to assess feasibility of simultaneous analysis for trace multi-components odorous and volatile organic compounds using a Triple-bed adsorbent tube with a thermal desorber and GC-MS. Triple-bed adsorbent tube is 3 bed packed Tenax-TA with small amount of Carbopack B and Carbosieve SIII in order of adsorption strength in a tube. The operating conditions of GC-MS was possibly able to and effectively detect high volatile and low molecular weight compounds at the mass range of 20~350 m/z using a below impurity 1ppm of Helium carrier gas, of which quantitatively analyzed by target ion extracts. According to the experiment, $C_1{\sim}C_5$ of 14 components; sulfur containing compounds(2), ketones(2), alcohols(4) and aldehydes(6) were simultaneously analyzed with recoveries of 99%, and good repeatability and linearity. High volatile and low molecular weight compounds such as methyl alcohol and acetaldehyde can be safely quantified with high recovery at a condition of 50mL/min of flow rate, below 2L of adsorption volume, and 45% of relative humidity. Target ion extract can also simultaneously quantify multicomponents with odorous and volatile organic compounds in an occasion of piled up two peaks.

Volatile Flavor Compounds of Korean Native Lilium (한국 자생나리의 휘발성 향기성분)

  • Choi Sung-Hee;Im Sungim;Jang Eun-Young;Kim Kiu-Weon
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.548-552
    • /
    • 2005
  • Volatile fragrance components in 5 kinds of Korean native Lilium were investigated and compared. The volatile components were extracted by SDE (simultaneous steam distillation and extraction) and identified by CC and GC-MS. As a result of the analysis of volatile aromatic ingredient of L. leichtlinii var. tigrinum Nickels., L. concolor var. parthneion Bak., L. tsingtauense Gilg., L. hansonii Leichtl., and L. amabile Palibin., using frozen materials, 60 kinds of volatile compound were identified, which were 28 aldehydes, 9 ketones, 8 alcohols, 5 esters, 5 acids, 3 furans and 2 others. The GC patterns of the aroma components of all samples resembled but the peak areas were different according to species, though all of them are Korean native Liliums.

Health effects on workers and actual exposure of VOCs in the nail shops (네일샵 종사자의 휘발성유기화합물 노출실태와 건강에 미치는 영향)

  • Kim, Nan-Hee;Min, Kyoung-Woo;Cho, Gwang-Woon;Seo, Dong-Ju;Im, Kyeong-Hun;Jeung, Won-Sam;Cho, Young-Gwan;Yang, Jin-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.59-69
    • /
    • 2017
  • Objectives: The objective of this study is to evaluate the exposure of VOCs and effects of the chemicals on the nail technicians whose works in a nail shop. Methods: For four month from May to August in 2016, we measured twenty-two kinds of VOCs in ten nail shops and carried out health examinations on thirty-four workers in there. Results: The TVOC concentration in indoor air of nail shops is $0.487mg/m^3$ at a minimum and $33.236mg/m^3$ at a maximum where it consists of 70.5% of Ketones, 25.4% of Alcohols, 2.6% of Esters, 0.8% of Aldehydes and 0.7% of Aromatics. The VOCs concentration during nail art works shows an increase in average ratio 1.8 compared to the concentration of indoor air quality and also the concentration of Isopropanol rose with 3.2 of the highest ratio. The results of Spearman correlation between TVOC concentration in indoor air and environmental factor was like that has significance level of correlation(${\rho}$<0.05, r=0.682) in case of number of customers per day, but the other factors were not meaningful in correlation. Correlation between VOCs and medical check-up items was like that has positive significance level(${\rho}$<0.01, r=0.638) between isopropanol and GPT, but the others have not meaningful. The exposure level of VOCs was not exceed the criteria exposure level 1 of working environment measuring method which announced by labor ministry in all ten nail shop indoor air quality. Conclusions: In this study although it was not significant correlation between harmful substances and medical check-up items in the nail shop indoor air quality, it is necessary to do more ventilation and to install exhaust facilities because of existing high VOCs concentration in the nail shop indoor air.

Optimum Extraction Methods of Volatile Compounds in Beef Extract Powder (쇠고기 엑기스 분말 휘발성 성분의 최적 추출방법에 관한 연구)

  • Kim Hun;Cho Woo-Jin;Jeong Eun-Jeong;Ahn Jun-Suck;Lim Chi-Won;Yoo Young-Jae;Kim Kwang-Ho;Cha Yong-Jun
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.4
    • /
    • pp.412-419
    • /
    • 2004
  • In odor to select optimum extraction methods of volatile compounds in beef extract powder(BEP) as basic data for the development of a new detection method of irradiated BEP, four extraction methods, such as solid phase microextraction with polar fiber(S-PD) and non-polar fiber(S-CD), purge and trap(P&T) and liquid liquid continuous extraction(LLCE) methods, were tested with gas chromatography/mass spectrometry method. A total of 106 volatile compounds including 22 hydrocarbons, 7 aldehydes, 6 ketones, 13 alcohols, 6 sulfur-containing compounds, 19 nitrogen-containing compounds, 6 aromatic compounds, 17 terpenes, 8 furans and 2 miscellaneous compounds were detected in BEP by four detection methods. The most compounds(62 compounds) were detected by S-PD method, followed by P&T(43), LLCE(38) and S-CD method(30). Among these methods, S-PD and P&T methods showed a complementary interrelationship to detect volatile compounds as S-PD method showed high detectabiltiy to all compound groups except hydrocarbons and ketones, which had high volatility and low molecular weight(less than RI 1200), but P&T method showed the contrary pattern to that of S-PD method. Moreover, the most of volatile compounds detected by S-CD and LLCE methods were also detectable by S-PD or/and P&T methods. Therefore, the simultaneous application of S-PD and P&T methods were selected as the optimum volatile extraction methods of BEP.

Analysis of Volatile Compounds in Kimchi-Flavored Steak Sauce (김치를 이용한 스테이크소스의 휘발성 향기성분)

  • Cho, Yong-Bum;Park, Woo-Po;Jung, Eun-Joo;Lee, Mi-Jeong;Lee, Yang-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.351-355
    • /
    • 2002
  • Volatile compounds of kimchi-flavored steak sauce were isolated using simultaneous steam distillation and solvent extraction methods and identified by matching mass spectrum and retention index (RI) with the reference data. Twenty-three compounds including five aldehydes, four alcohols, four acids, three sulfur-containing compounds, one ketone, and six others were identified, among which the most abundant compound was eugenol. Sulfides such as dimethyl dis- and trisulfides, and acids such as acetic and dodecanoic acids showed strong effects on the kimchi flavor. Aroma extract dilution analysis with three fold dilution factor shown in over the FD value 34 identified 2-butanal, 2-pentylfuran, methyl-2-propenyl disulfide, and 2-furanmethanol. Strong good aroma was detected in the RI range between 1030 and 1357, bad aroma in RI 1561, sweety aroma in RI 2057, clover aroma of eugenol in RI 2122, and rancid flavor in RI 2251.

Characteristics of Volatile Flavor Compounds in Kochujangs with Meju and Soybean Koji during Fermentation (메주와 콩 고오지를 혼용하여 담금한 고추장 숙성중의 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1035-1042
    • /
    • 2000
  • Volatile compounds of kochujang prepared with meju and koji were analyzed by using a purge and trap method during fermentation and identified with GC-MSD. Thirteen alcohols, seventeen esters, seven acids, six aldehydes and nine others were identified. Twenty four volatile flavor detected immediately after making kochujang including 7 alcohols and 9 esters. Six volatile flavor compounds including 1 alcohol and 3 esters were more found after 30 day of fermentation and increased to forty nine of volatile compounds after 150 days. Six alcohols such as ethanol, 3-methyl-butanol, 2-methyl-1-propanol, 1-butanol and nine esters such as ethyl acetate, ethyl butyrate, ethyl caproate, ethyl carpylate and seven others were commonly found through the fermentation period. Peak area (%) of 1-butanol was the highest one among the volatile flavor compounds after 30 day of fermentation and ethanol showed the highest peak area after 60-90 day and 150 day of fermentation, and 3-methyl-1-butanol showed the highest peak area after 120 day of fermentation, 2-Methyl-1-propanol, ethyl butyrate, ethyl acetate, acetaldehyde, ethoxyethene, ethenone, methylbenzene were detected in the kochujang during the fermentation.

  • PDF

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Volatile Flavor Constituents of the Low-Salt Fermented Ascidian (저염 우렁쉥이 젓갈의 휘발성성분)

  • Hwang, Seok-Min;Kim, Yeong-A;Ju, Jong-Chan;Lee, So-Jeong;Choi, Jong-Duck;Oh, Kwang-Soo
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.141-150
    • /
    • 2011
  • In order to elucidate a flavor characteristics of the low-salt fermented ascidian (LFA), a volatile flavor constituents were extracted and analyzed by SDE apparatus and GC/MS. Salinity, pH and volatile basic nitrogen of the LFA were 8.0%, 5.17 and 23.0 mg/100 g, respectively. Total content of volatile flavor compounds identified from the LFA was $1,221.42{\mu}g/100g$ as cyclohexanol (internal standard), it were composed of 23 alcohols ($644.85{\mu}g/100g$) such as 1-octanol and 2-pentanol, 16 acids ($293.91{\mu}g/100g$) such as 2-hydroxy-propanoic acid and butanoic acid, 15 aldehydes ($153.61{\mu}g/100g$) such as trans-2-hexanal and benzaldehyde, 29 hydrocarbons ($97.65{\mu}g/100g$) such as 1,4-dimehyl-cyclooctane and 1-nonene, six aromatic compounds ($6.20{\mu}g/100g$), two esters ($2.07{\mu}g/100g$), two nitrogen-containing compounds ($19.09{\mu}g/100g$) and three micellaneous compounds ($4.04{\mu}g/100g$).

Change of the Volatile Organic Compounds from Irradiated Dried-Red Pepper (방사선 조사된 건고추의 휘발성 유기화합물 변화)

  • Shim Sung-Lye;Seo Hye-Young;Kim Jun-Hyeong;No Ki-Mi;Yang Su-Hyeong;Gyawali Rajendra;Park Eun-Ryong;Lee Kang-Bong;Lee Yun-Dong;Myoung Dong-Ho;Kim Kyong-Su
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Compare with volatile organic compounds from unirradiated and irradiated dried-red pepper that is representative spice of korea. Volatile compounds from unirradiated and irradiated dried-red pepper were extracted using simultaneous distillation-extraction(SDE) apparatus and analyzed by Gas chromatography/mass spectrometer (GC/MS). A total of 61 and 62 compounds were identified from unirradiated and irradiated dried red pepper at dose of 10 kGy. These compounds included alcohols, aldehydes, furans, hydrocarbons, ketones, N-containing compounds, terpenes and micellaneous compounds. Furfural, benzaldehyde, linalool, nerolidol, ${\alpha}$-curcumene, ${\alpha}$-zingibirene were detected as the major volatile compounds from dried-red pepper. Specially, 1,3-bis[1,1-dimethylethyl]-benzene was confirmed as a marker of irradiated dried-red pepper because is not detected in unirraiatied dried-red pepper.

Kinetic Study on the Oxidation Reaction of Alcohols by Cr(VI)-Quinoline Compound (크롬(VI)-퀴놀린 화합물에 의한 알코올류의 산화반응에 대한 반응속도론적 연구)

  • Park, Young-Cho;Kim, Soo-Jong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.109-114
    • /
    • 2021
  • Cr(VI)-quinoline compound[(C9H7NH)2Cr2O7] was synthesized by the reaction between of quinoline and chromium(VI) trioxide, and structure was FT-IR, elemental analysis. The oxidation ability of benzyl alcohol greatly depends upon the dielectric constant of the used organic solvent, where carbon tetrachloride was worst and N,N'-dimethylformamide was best solvent. Noticeably, in N,N'-dimethylformamide solvent, Cr(VI)-quinoline compound oxidized substituted benzyl alcohols. The Hammett reaction constant(ρ)=-0.69(303K). As a resuit, Cr(VI)-quinoline compound was found as efficicent oxidizing agent that converted benzyl alcohol, allyl alcohol, primary alcohol and secondary alcohols to the corresponding aldehydes or ketones. Cr(VI)-quinoline compound was selective oxidizing agent of benzyl alcohol, allyl alcohol and primary alcohol in the presence of secondary alcohol ones.