• Title/Summary/Keyword: airborne measurement

Search Result 158, Processing Time 0.024 seconds

Characteristics on the distribution of salinity of airborne sea salt by height (높이에 따른 비래염분량의 감소 특성)

  • Lee Jong Suk;Choi Won Sung;Kim Do Gyeum;Moon Han Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.261-264
    • /
    • 2005
  • For concrete structures immersed in seawater, the concentration of chloride used to estimate the chloride diffusion coefficient can be defined as the seawater chloride concentration. However, for seashore concrete structures which are not coming into direct contact with seawater, establishing the interface concentration of chloride becomes delicate. In addition, concrete structures are greatly affected by salt attack primarily due to airborne sea salt like it can be seen through the corrosion of rebar. This study intends to investigate characteristics on the salinity of airborne sea salt by height. Salinity measurement devices were installed at height of 2, 10 and 19m on the seashore water tower located in the area of Samchuk in the Eastern coast. Analysis results of the decrease of salinity with respect to the height above the ground at a distance of 30m from the seashore showed that the reduction reached about 40$\%$ at a height of 10m and 60$\%$ at 20m.

  • PDF

Design of an Ultra-Wideband LPDA Antenna for the Feeder of an Airborne Spinning Direction-Finding Reflector Antenna (공중 회전 방향탐지 반사판 안테나 급전기용 초광대역 LPDA 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.653-659
    • /
    • 2016
  • This paper proposes an ultra-wideband Log-Periodic Dipole Array(LPDA) antenna for the feeder of a reflector antenna to be used for airborne spinning direction-finding and detecting wideband signals. To obtain the ultra-wideband characteristics over the 20:1 bandwidth from S to Ka band, the radiation elements of the antenna were printed on a substrate and a wedge-typed dielectric supporter with robust structure was inserted between the substrates. Also, the center portion of the supporter was replaced by a styrofoam material to reduce the supporter weight. The 5-dB return loss of the designed LPDA antenna showed ultra-wideband characteristics, which are 37.57:1(1.09~40.95 GHz) in the simulation and 33.85:1(1.31~44.35 GHz) in the measurement. We achieved the required gains of 5.78 dBi in the simulation and 5.76 dBi in the measurement in the operating band. The proposed robust, light-weight, and ultra-wideband LPDA antenna confirmed that it can be applied for airborne applications.

Using DGPS as An Acceleration Sensor for Airborne Gravimetry

  • Zhang, Kaidong;Shen, Lincheng;Hu, Xiaoping;Wu, Meiping
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.327-332
    • /
    • 2006
  • In airborne gravimetry, there are two data streams. One is the specific force measured by an air/sea gravimeter or accelerometers, the other is kinematic acceleration measured by DGPS. And the difference of them provides the gravity disturbance information. To satisfy the requirement of most applications, an accuracy of 1mGal $(1mCal=10^{-5}m/s^{2})$ with a spatial resolution of 1km is the aim of current airborne gravimetry. There are two different methods to derive the kinematic acceleration. The generally used method is to differentiate the position twice, and the position can be calculated by commercial DGPS software. The main defect of this method is that integer ambiguities need to be fixed to get the precise position solution, but it's not a trivial thing for long base line. And to fix integer ambiguities, the noisier iono-free measurement is used. When differentiation is applied, noise is amplified and will influence the accuracy of acceleration. The other method is to get carrier phase acceleration by differentiate the carrier phase first, and then using the acceleration of GPS satellite to derive the vehicle acceleration. The main advantages include that fixing integer ambiguities is not needed anymore, position can be relaxed to about 10 meters, and smoother acceleration can be got since iono-free measurement is not needed. In some literatures, it's considered that the dynamic performance of the second method is inferior to that of the first. Through analysis, it is found that the performance degradation in dynamic environment results from the simplification of the GPS carrier phase observable model. And an iterative algorithm is presented to compensate the model error. Using a dynamic GPS data from an aeromagnetic survey, the importance of this compensation is showed at last.

  • PDF

Airborne In-situ Measurement of CO2 and CH4 in Korea: Case Study of Vertical Distribution Measured at Anmyeon-do in Winter (항공기를 이용한 온실가스 CO2와 CH4의 연속관측: 안면도 겨울철 연직분포사례 분석)

  • Li, Shanlan;Goo, Tae-Young;Moon, Hyejin;Labzovskii, Lev;Kenea, Samuel Takele;Oh, Young-Suk;Lee, Haeyoung;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.511-523
    • /
    • 2019
  • A new Korean Meteorological Administration (KMA) airborne measurement platform has been established for regular observations for scientific purpose over South Korea since late 2017. CRDS G-2401m analyzer mounted on the King Air 350HW was used to continuous measurement of CO2, CH4 and CO mole fraction. The total uncertainty of measurements was estimated to be 0.07 ppm for CO2, 0.5 ppb for CH4, and 4.2 ppb for CO by combination of instrument precision, repeatability test simulated in-flight condition and water vapor correction uncertainty. The airborne vertical profile measurements were performed at a regional Global Atmosphere Watch (GAW) Anmyeon-do (AMY) station that belongs to the Total Carbon Column Observing Network (TCCON) and provides concurrent observations to the Greenhouse Gases Observing Satellite (GOSAT) overpasses. The vertical profile of CO2 shows clear altitude gradient, while the CH4 shows non-homogenous pattern in the free troposphere over Anmyeon-do. Vertically averaged CO2 at the altitude between 1.5 and 8.0km are lower than AMY surface background value about 7 ppm but higher than that observed in free troposphere of western pacific region about 4 ppm, respectively. CH4 shows lower level than those from ground GAW stations, comparable with flask airborne data that was taken in the western pacific region. Furthermore, this study shows that the combination of CH4 distribution in free troposphere and trajectory analysis, taking account of convective mixing, is a useful tool in investigating CH4 transport processes from tropical region to Korean region in winter season.

Moving Clutter Signal Measurement and Its Spectral Analysis for Airborne Pulse Doppler Radar (비행 탑재 레이다의 이동 클러터 신호 수집 및 도플러 스팩트럼 특성 분석)

  • Jeun, In-Pyung;Choi, Min-Su;Hwang, Kwang-Yun;Kwag, Young-Kil
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.439-442
    • /
    • 2005
  • An airborne radar performance can be sensitive to the variation of the Doppler center frequency and the spectral spread of the ground clutter return due to the radar platform moving and aspect angle of the scanning beam to the target. In this paper, for the performance test of the airborne pulsed Doppler radar system developed, the high-speed radar data acquisition system is implemented for acquiring the raw radar signal in real-time. Based on the various test scenarios from airborne-platform to the moving platform, the various radar target and clutter signals are collected and their spectrum is analyzed for the verification of the radar performance in the real-time flight test environments.

  • PDF

Detection of Seabed Rock Using Airborne Bathymetric Lidar and Hyperspectral Data in the East Sea Coastal Area

  • Shin, Myoung Sig;Shin, Jung Il;Park, In Sun;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • The distribution of seabed rock in the coastal area is relevant to navigation safety and development of ocean resources where it is an essential hydrographic measurement. Currently, the distribution of seabed rock relies on interpretations of water depth data or point based bottom materials survey methods, which have low efficiency. This study uses the airborne bathymetric Lidar data and the hyperspectral image to detect seabed rock in the coastal area of the East Sea. Airborne bathymetric Lidar data detected seabed rocks with texture information that provided 88% accuracy and 24% commission error. Using the airborne hyperspectral image, a classification result of rock and sand gave 79% accuracy, 11% commission error and 7% omission error. The texture data and hyperspectral image were fused to overcome the limitations of individual data. The classification result using fused data showed an improved result with 96% accuracy, 6% commission error and 1% omission error.

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik;Marcel Ohera
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1052-1060
    • /
    • 2023
  • The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

Correction in the Measurement Error of Water Depth Caused by the Effect of Seafloor Slope on Peak Timing of Airborne LiDAR Waveforms (지형 기울기에 의한 항공 수심 라이다 수심 측정 오차 보정)

  • Sim, Ki Hyeon;Woo, Jae Heun;Lee, Jae Yong;Kim, Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • Light detection and ranging (LiDAR) is one of the most efficient technologies to obtain the topographic and bathymetric map of coastal zones, superior to other technologies, such as sound navigation and ranging (SONAR) and synthetic aperture radar (SAR). However, the measurement results using LiDAR are vulnerable to environmental factors. To achieve a correspondence between the acquired LiDAR data and reality, error sources must be considered, such as the water surface slope, water turbidity, and seafloor slope. Based on the knowledge of those factors' effects, error corrections can be applied. We concentrated on the effect of the seafloor slope on LiDAR waveforms while restricting other error sources. A simulation regarding in-water beam scattering was conducted, followed by an investigation of the correlation between the seafloor slope and peak timing of return waveforms. As a result, an equation was derived to correct the depth error caused by the seafloor slope.

Properties on the Airborne Chlorides of Offshore Bridges on the Western/Southern Coast in South Korea (국내 서/남해안 해상교량의 월별, 높이별 비래염분량 특성)

  • Jung, Jahe;Min, Jiyoung;Lee, Binna;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.59-67
    • /
    • 2022
  • In this study, the monthly airborne chlorides flying into the offshore bridges were investigated depending on the sea level. The target structures were 9 bridges located on the western and southern coast of South Korea. The airborne chlorides were measured at different sea levels on each bridge every month during 1 year. The results showed that the strongest seasonal wind from the northwest in winter expecially have led increase of the airborne chlorides, and its effect was more significant in the western coast than the southern coast. It was also found that the airborne chlorides declined with the increase of sea level. Three types of curves were suggested for analyzing the decrease trend with the sea level, based on the airborne chlorides at the lowest measurement height of main tower. The trend was varied depending on the sea area, and even in the same sea area, the local topographic condition affected the airborne chlorides. It means that the location and local topography should be considered simultaneously for durability management in the framework of the chloride source, and then the influence of the chloride source should be classified, e.g. safe and dangerous. From these results, it is expected that it could be used as baseline data for the evaluation of the deterioration environment in the Detailed guidelines for safety and maintenance of facilities [Performance evaluation]_Bridge.