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Abstract

The distribution of seabed rock in the coastal area is relevant to navigation safety and development of 
ocean resources where it is an essential hydrographic measurement. Currently, the distribution of seabed rock 
relies on interpretations of water depth data or point based bottom materials survey methods, which have low 
efficiency. This study uses the airborne bathymetric Lidar data and the hyperspectral image to detect seabed 
rock in the coastal area of the East Sea. Airborne bathymetric Lidar data detected seabed rocks with texture 
information that provided 88% accuracy and 24% commission error. Using the airborne hyperspectral image, 
a classification result of rock and sand gave 79% accuracy, 11% commission error and 7% omission error. 
The texture data and hyperspectral image were fused to overcome the limitations of individual data. The 
classification result using fused data showed an improved result with 96% accuracy, 6% commission error and 
1% omission error.  
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1. Introduction

The coast is an interactive place among the land, ocean, 
and atmosphere which is influenced greatly by climate 
change and development. In Korea, around 34% of the cities 
are close to the coast, and around 60% of the power plants 
and more than half of the industrial complexes are located 
on the coast. However, information about the coastal area of 
Korea is still insufficient (Oh et al., 2004).

Investigation of seabed material has high importance 
because it is associated with the development and 
preservation of the ocean, navigation safety, and military 
actions. The traditional survey methods for seabed material 

can be divided into two types, scuba diving and surveying 
with a vessel. Scuba diving is the most accurate method, 
but it is inefficient in relation to the area covered and time. 
Surveying with a vessel sets sample points with constant 
distance. It is more efficient compared to scuba diving in the 
relation to area coverage and time. However, the point based 
survey with a vessel has a low density due to the time and 
cost, and areas may be missed due to the limitation of vessel 
access. At present, there is not enough precise data about how 
the seabed material of Korea’s coast is distributed spatially.

Effective measurement and mapping technologies have 
been developed recently using remote sensing sensors. In a 
hydrographic survey, researchers are able to measure water 
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depth, coast line, and seabed topography using airborne 
bathymetric Lidar (Seo and Kim, 2008; Zavalas et al., 2014). 
There is a case using backscattered intensity acquired from 
the Lidar to detect the seabed rock (Collins et al., 2007). 
Some studies used the hyperspectral image to investigate 
seabed material and seaweed distribution in the intertidal 
zone, and types of land-cover on the coastal land area (Choi, 
2014; Kim, 2014; NOAA Coastal Services Center, 2010). 
Other studies reported the distribution of coral reef and/or 
the material of the seabed present in shallow waters below 
10m depth (Kim et al., 2013; Mishra et al., 2007; Ciraolo 
et al., 2006; Tamir and Arnon, 2015). However, these 
studies were made on a shallow and gentle seabed and did 
not consider the variation of spectral reflectance due to the 
water depth.

In Korea, airborne Lidar and hyperspectral sensors 
have been introduced recently where there is inadequate 
application of the technology, but most studies are focused 
on the land. Thus, there is a need to develop hydrographic 
surveys and investigative technologies using hyperspectral 
image and bathymetric Lidar data on ocean seabeds. Also, 
for studying seabeds with optical images, there is a need for 
technology to correct the variation of spectral reflectance 
with water depth. When the seabed slope is steep as in the 
East Sea, the need for corrective technology becomes greater.

This study attempts to detect seabed rock of the East Sea 
using airborne hyperspectral image and bathymetric Lidar 

data. To increase the accuracy, fused data that integrate the 
hyperspectral image and the seabed topographic (texture) 
data are suggested for detecting seabed rock.

2. Study Area and Data

The study area is the coast from Sacheonjin Port to 
Gyeongpo Beach in Gangneung-si, Gangwon-do. The water 
in this area is comparatively clear, and the seabed material is 
composed of sand and rock. The water depth is from 0m to 
20m, and the rock is distributed at the top (Sacheonjin Port 
north side), middle (Sacheon Beach), and bottom (Gyeongpo 
Beach) parts of study area. 

The airborne bathymetric Lidar data used in this study was 
acquired in September of 2013 with the CZMIL (Coastal Zone 
Mapping Imaging LiDAR) sensor of Optech Inc. in Canada. 
The flight altitude was 400m, and the laser scanning type was 
circular. The laser scanning rate was 10 kHz with 16.38 points 
per 5m x 5m area. The airborne bathymetric Lidar data was 
preprocessed in the order of GPS/INS data process, laser data 
process, and topographic data classification (noise removal). 
Then the point cloud data was converted to raster format such 
as DEM (digital elevation model) using the cubic convolution 
interpolation method. Here, the resolution of the raster data 
had 1m which was the same resolution as the hyperspectral 
image. Fig. 1(a) shows the CZMIL airborne bathymetric Lidar 
data that was interpolated to the raster format. In this figure, 

Fig. 1. (a) Airborne bathymetric Lidar (CZMIL) data and (b) Hyperspectral image (CASI-1500), where red line is shore line

(a) (b)
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the shore line is indicated by the red line. The hyperspectral 
image was acquired in October of 2013 with the CASI-1500 
sensor of Canada’s ITRES. The flight altitude was 2000m, 
the wavelength range was 380-1050nm, the number of band 
was 48, and the spatial resolution was 1m. The hyperspectral 
image was preprocessed in two steps. The first step was a 
general preprocessing that included radiometric correction, 
atmospheric correction, and geometric correction. The 
second step was additional preprocessing to extract signals 
from the seabed which estimated the water reflectance 
(removal of water surface reflection) and water column 
correction. The additional preprocessing is explained in 
Chapter 4. Fig. 1 (b) shows the hyperspectral image that was 
preprocessed from radiometric to geometric correction. 

Validation samples were collected with visual interpretation 
of both hyperspectral image and Lidar data. For visual 
interpretation of seabed material, a field survey dataset 
from a survey by Korea Hydrographic and Oceanographic 
Administration in 2015 was used as a reference. Validation 
samples are composed of 160 points where 80 are rock points 
and 80 are sand points. Fig. 2 shows the distribution of the 
validation samples where red and yellow refer to rock and 
sand, respectively. 

3. Seabed Rock Detection using

Bathymetric Lidar

When looking at the seabed topography, generally the 

rock has a rough texture compared to other materials such 
as mudflat or sand. Thus, when the seabed contained rock, 
there seemed to be a high variation in the water depth. When 
the water depth is expressed as a brightness value, rocky 
areas display uneven brightness in the texture perspective. 
The statistical value within the kernel or moving window was 
generally used to acquire the texture information. First order 
statistical operators include the maximum-minimum (range), 
average, variance, standard deviation, and entropy (Jensen, 
2005). 

This study applied the maximum-minimum operator for 
the water depth from bathymetric Lidar data to convert it 
to texture data. Here, the size of the moving window was 
applied diversely as 3 x 3, 7 x 7, and 9 x 9, and the optimum 
window size was decided as 7 x 7. Thus, the converted 
texture data showed a difference of minimum water depth 
and maximum water depth appearing within the space of 7m 
x 7m surrounding each pixel. 

To detect the seabed rock, a threshold value of 0.5m was 
applied to the texture data. This was because the CZMIL 
sensor had a water depth maximum measurement error of 
0.4m at 30m depth. When the difference in the water depth 
(maximum-minimum) was bigger than 0.5m, it was judged to 
be a rock. This is because the study area was shallower than 
20m in depth.

Fig. 3 shows the seabed rock detection result. When 
visually compared with the water depth data of Fig. 1 (a), the 
distribution of the rock matches. However, when zooming in 

Fig. 2. Location of validation samples with eye 
interpretation (red: rock, yellow: sand)

Fig. 3. Seabed rock detection result using bathy 
metric Lidar data
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on some of the areas such as in Fig. 4, the detected boundary 
of rock is located outside the area compared to the boundary 
shown visually in the water depth data. This indicates over-
detection. This might be caused by a blur effect which is a 
characteristic of the method using a moving window. The 
blur effect increases when the window size is large, such as a 
low-pass filter. On the other hand, when making the window 
size smaller, rock is not detected (omission error) in an area 
with a small variation of water depth even though rock is 
actually present.

To analyze the accuracy of the detection result, it was 
compared with 160 validation samples (Table 1). Overall, 141 
points among the 160 validation points corresponded to the 
detection result, indicating 88% accuracy. In the case of the 
rock, 80 validation points were detected as rock, indicating 
100% detection rate. Although 19 sandy points were detected 
as rocks among 80 validation points, giving 24% commission 
error, the explanation for the error are the characteristics of 

the texture operator with the moving window as mentioned 
above. Thus, the accuracy of the detection method using 
texture information needs improvement. 

4. Seabed Rock Detection using the 

Hyperspectral Image

4.1 �Correction for water surface reflection and 

water column absorption effects

The sensor records the electro-magnetic (EM) energy that 
is reflected or scattered from the atmosphere, water surface, 
water column and seabed. Thus, to estimate the signal 
derived only from the seabed, there must be a correction for 
the components of the signal (EM energy) that are derived 
from the atmosphere, water surface, and water column. 
Atmospheric correction was already included in the general 
preprocessing procedure of Chapter 2. Correction for the 
water surface reflectance requires estimating the signal 
component that arises from reflection of the water surface. In 
this study, the method of Hedley (2005) was used to estimate 
the reflected energy from the water surface. The method 
assumes that the reflectance of water is 0 or a minimum value 
in the near-infrared wavelength. Fig. 5 shows the comparison 
of the image before and after correction for water surface 
reflection. 

Water column correction normalizes the variation of 
seabed reflectance by water depth. EM energy is absorbed 
by the water column during transmission to the seabed and 

Fig. 4. (a) Seabed rock detection result and (b) Bathymetric Lidar data

(a) (b)

                       Reference
      Detection Rock Sand Total

Rock 80 19 99

Sand 0 61 61

Total 80 80 160

Detection accuracy = (80+61)/160 = 88%

Table 1. Accuracy of seabed rock detection result using 
bathymetric Lidar data
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can vary according to water quality. However, this research 
assumed that the water quality is constant in the narrow study 
area and therefore disregarded the variation in the reflectance 
by water quality. Lyzenga (1978) suggested Eq. (1) for the 
relationship of water reflectance and bottom albedo based on 
Beer’s law.

RW = (Ad – R∞)exp(– gz) + R∞ (1)

where RW is water reflectance, z is depth, Ad is bottom 
albedo, g is diffuse attenuation coefficient, and R∞ is water 
reflectance at very deep water.

According to Eq. (1), the reflectance observed at the 
water surface (just below the surface) is the sum of the 
reflectance of seabed and water column which is reduced 
exponentially by the water depth. Thus, to estimate EM 
energy reflected from the seabed, the water column 
absorption must be normalized in relation to water depth. 
In this study, the water column absorption effect was 
corrected for the water reflectance of the hyperspectral 
image with 1m depth interval. Then a regression model 
was developed which showed the exponential relationship 
between water depth and water reflectance for the same 
seabed material. Finally, the regression model was 
inversely transformed into a logarithmic model for water 
column correction which was applied to whole image. Fig. 
6 (a) shows the hyperspectral image corrected for the water 
column absorption effect.

4.2 Detection using the hyperspectral image 

For the training sample on seabed rock detection using the 
hyperspectral image, pixels of target (rock) and background 
(sand) were collected from the pixels of the image itself. 
Here, the number of training samples were 100 (50 rocks, 
50 sand) where the location was clear in the 1:5000 chart. 
The hyperspectral image was classified to rock and sand 
using a supervised classifier and collected training samples. 
This study consistently used a maximum likelihood (MLH) 
classifier for the hyperspectral image and fused data as is 
explained in Chapter 5.

Fig. 6 (b) shows the classification result using the 
hyperspectral image of Fig. 6 (a). When visually comparing 
the classification result with the hyperspectral image, the 
classification result matches the distribution of rock at the top, 
middle and bottom of the image. However, there are a lot of 
omission and commission errors. Some rocks were not detected 
due to weak signals (uncertain reflectance). Some sand in 
shallow areas was detected as rock. Especially, the sand of the 
Sacheon Beach was detected as rock. There are three possible 
reasons for this kind of error. First is the correction error of 
the hyperspectral image that might be included in correction 
procedures such as atmospheric correction, water surface 
reflectance removal and water column correction. Second 
is the natural variation in the reflectance from properties of 
seabed and water columns. Third is the environmental signal 
distortion such as the wave (breaker) and the shadow that 
occurs during image acquisition.

Fig. 5. Hyperspectral Image (a) before water surface reflection correction and (b) after water surface reflection correction

(a) (b)
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Table 2 shows the detection accuracy of the hyperspectral 
image. The overall accuracy is 79% where 126 points are 
matched among 160 validation samples. When analyzing 
the detection ratio in detail, 59 rocks are detected among 80 
rocks in the validation samples, giving a 74% detection rate 
and a 26% omission error. Also, a commission error, where 
the sand is detected as rock, occurred in 13 points among the 
80 sand points giving a 16% commission error. 

5. Data Fusion and Seabed Rock Detection 

5.1 �Fusion of hyperspectral image and texture 

data

Hyperspectral image and bathymetric Lidar data have 
advantages and disadvantages arising from the characteristics 
of each sensor. The hyperspectral image can estimate 
boundaries of seabed materials accurately using spectral 
reflectance, although it includes uncertainty and variation 
by depth, seabed properties, water quality, and imaging 
environments (Hedley, 2013). Bathymetric Lidar can provide 
depth or topographic information although it is limited 
with respect to spectral information for classifying seabed 
material (Pittman et al., 2013). Data fusion is a method to 
increase the accuracy of seabed mapping (Wozencraft and 

(a)

                       Reference
      Detection Rock Sand Total

Rock 59 13 72
Sand 21 67 88
Total 80 80 160

Detection accuracy = (59+67)/160 = 79%

Table 2. Accuracy of seabed rock detection result using 
hyperspectral image

Fig. 7. (a) Color composition of fused image using 
hyperspectral image and texture data (R: texture, G: 

632nm, B: 546nm) and (b) MLH classification result (red is 
rock and yellow is sand)

(a)

(b)

Fig. 6. (a) Water column corrected hyperspectral  
image and (b) MLH classification result  

(red is rock and yellow is sand)

(b)
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Park, 2013). This study attempted fusion of texture data and 
the hyperspectral image to overcome the uncertainty from 
water depth in the hyperspectral image and the limitation 
of spectral information in Lidar data. The texture data was 
added as a band in the hyperspectral image, that had 49 bands 
consisting of 48 spectral bands and 1 texture band. Fig. 7(a) 
shows a color composite of fused data (R: texture, G: 632nm, 
B: 546nm) where the seabed rocks are shown in red and the 
sand is shown as blue and green.

5.2 Detection using fused data

The maximum likelihood (MLH) classifier was used to 
detect seabed rock using fused data which was the same 
method as used for the hyperspectral image. Supervised 
classifiers are widely used to classify hyperspectral images. 
These classifiers include spectral angle mapper (SAM), 
support vector machine (SVM), and maximum likelihood 
(MLH). Previous studies employed the most widely used 
MLH classifier on the seabed mapping with integrated 
data of Lidar and hyperspectral image (Ciraolo et al., 2006; 
Wozencraft and Park, 2013). The fused data has a different 
signal range or different characteristics between spectral 
bands and a texture band. This might be a reason for limiting 
the use of a classifier based on spectral characteristics. 
The MLH classifier can consider statistical characteristics 
of spectral and texture information at the same time. 
Additionally, some studies reported better or similar accuracy 
of MLH than classifiers such as SAM and SVM when the 
training sample is adequate (Yang et al., 2012; Shafri et al., 
2007).  Rock and sand were classified by applying the MLH 

classifier to fused data. Then, only rock was extracted from 
the classified result for its final identification.

Fig. 7 (b) shows the classification result using the fused 
data of Fig. 7 (a). When visually comparing the classification 
result with the fused data, the classification result shows a 
matched and accurate boundary between rock and sand. 
However, some commission errors still exist, such as 
noise that is distributed in the very shallow area close to 
the shore line. Table 3 shows the accuracy of the detection 
results using fused data. The overall accuracy is 96% with 
154 correspondent points among 160 points. In the case of 
rock, 79 points were detected among 80 validation samples 
which give a 99% detection rate, 1% omission error and 6% 
commission error.

Fig. 8 comparing the detection results for seabed rock 
shows that the detection result using fused data gives a 
clearer boundary and fewer errors than detection results 
using texture data or the hyperspectral image separately. 

                       Reference
      Detection Rock Sand Total

Rock 79 5 84

Sand 1 75 76

Total 80 80 160

Detection accuracy = (79+75)/160 = 96%

Table 3. Accuracy of seabed rock detection result using 
fused data

Fig. 8. Seabed rock detection results using (a) texture of Lidar data, (b) hyperspectral image and (c) fused data
(a) (b) (c)
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Table 4 compares accuracies among texture from Lidar, 
hyperspectral image and fused data. Overall accuracy 
of fused data is 17%p and 8%p higher than the detection 
results of hyperspectral image and bathymetric Lidar data, 
respectively. Omission error of fused data is 25%p lower 
than that of hyperspectral image. Commission error of fused 
data is 18%p and 10%p lower than that of texture data and 
hyperspectral image, respectively. Therefore, the fused data 
provides an improved detection result and higher accuracy 
than the individual data sets.

6. Conclusion

This study attempted to suggest an efficient and accurate 
method for investigating rock distribution in coastal seabed 
using airborne remote sensing data. For this, texture data 
from bathymetric Lidar data and hyperspectral image was 
used individually to find out the limits and possibilities of 
their use. Then, the two datasets were fused to increase 
detection accuracy. When compared with the results using 
individual data, fused data had 8%p and 17%p higher 
overall accuracy than Lidar and hyperspectral image data, 
respectively. Additionally, commission error was decreased 
10-18%p and omission error is decreased 25%p. Therefore, 
for seabed rock detection, it is better to use the fused data 
than individual hyperspectral image and bathymetric Lidar 
data. 

There is a need for future studies in three different subject 
areas. First is the need to increase the detection accuracy. 
Various false alarms were found with visual interpretation 
although numerically 96% accuracy was obtained. Second, 
there is a need to subdivide the classes of materials such as the 

sand, gravel, and mud along with the rock. Third, additional 
study is needed for the expansion of the geographic region. 
Because the Korean Peninsula is surrounded by three seas, 
and the characteristics of each sea are diverse. Therefore, 
there is a need for additional studies which take into account 
these limitations and characteristics. 
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