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Abstract 
 
  In airborne gravimetry, there are two data streams. One is the specific force measured by an air/sea gravimeter or 
accelerometers, the other is kinematic acceleration measured by DGPS. And the difference of them provides the grav-
ity disturbance information. To satisfy the requirement of most applications, an accuracy of 1mGal (1mGal=10-5m/s2) 
with a spatial resolution of 1km is the aim of current airborne gravimetry. 

There are two different methods to derive the kinematic acceleration. The generally used method is to differentiate 
the position twice, and the position can be calculated by commercial DGPS software. The main defect of this method 
is that integer ambiguities need to be fixed to get the precise position solution, but it’s not a trivial thing for long base 
line. And to fix integer ambiguities, the noisier iono-free measurement is used. When differentiation is applied, noise 
is amplified and will influence the accuracy of acceleration. 

The other method is to get carrier phase acceleration by differentiate the carrier phase first, and then using the ac-
celeration of GPS satellite to derive the vehicle acceleration. The main advantages include that fixing integer ambi-
guities is not needed anymore, position can be relaxed to about 10 meters, and smoother acceleration can be got since 
iono-free measurement is not needed.  

In some literatures, it’s considered that the dynamic performance of the second method is inferior to that of the first. 
Through analysis, it is found that the performance degradation in dynamic environment results from the simplifica-
tion of the GPS carrier phase observable model. And an iterative algorithm is presented to compensate the model 
error. Using a dynamic GPS data from an aeromagnetic survey, the importance of this compensation is showed at last. 
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1. Introduction 

 
Airborne gravimetry is a method to measure the Earth’s grav-

ity over both inaccessible continental and oceanic regions (mar-
gins) with a spatial resolution wavelength(λ) ranging from 1 to 
10 km, thus filling the gap between land-based(λ<1 km) and 
spaceborne(λ>10 km over oceans and λ>1000 km over land) 
techniques, see Verdun et al. (2003). The history of Airborne 
gravimetry can be traced back to the 50’s of the 20th century, see 
Thompson (1959), but until the realization of carrier phase 
DGPS in the late of 1980s that airborne gravimetry made a big 
progress towards fully operational. 

The principle of airborne vector gravimetry is based on the 
Newton’s equation of motion in the gravitational field of the 
earth. In the local-level frame(n), the model of airborne vector 
gravimetry is expressed by the equation, see Bruton (2000) 

     n
b (2 )n n b n n n n

e ie en e= − + + × −δg v C f ω ω v γ       (1) 

Where nδg is the gravity disturbance vector to be determined, 
n
ev , n

ev  is the vehicle acceleration and velocity respectively, 
n
bC  is direction cosine matrix from the body frame(b) to the 

local-level frame(n), f b is the specific force in the body frame 
measured by three accelerometers, (2 )n n n

ie en e+ ×ω ω v  is the total 

of Coriolis and centripetal acceleration, nγ is the normal gravity 
vector. 

Eq.(1) expresses the fact that the gravity disturbance vector 
can be extracted by subtracting specific force from kinematic 
acceleration after referring both to a common frame, often the 

local-level frame. For an airborne scalar gravimetry, only the 
vertical component of nδg needs to be determined.  

Although there are at least three different approaches to meas-
ure specific force: air/sea gravimeter, gimbaled inertial naviga-
tion system and strapdown inertial navigation system, using car-
rier phase DGPS to derive kinematic acceleration is nearly the 
only choice which can satisfy the requirement of airborne gra-
vimetry. From Eq.(1), it can be seen that for the quality of air-
borne gravimetry, both specific force and kinematic acceleration 
should have adequate accuracy. To satisfy the requirement of 
most applications, an accuracy of 1mGal (1mGal=10-5m/s2) with 
a spatial resolution of 1km is the aim of current airborne gravim-
etry, see Duquenne et al. (2002). 

To derive the kinematic acceleration, the commonly used 
method is to differentiate the position twice, and the position can 
be calculated by commercial DGPS software, such as Waypoint 
GrafNav®, it also be called as the position method. The main 
defect of this method is that integer ambiguities need to be fixed 
to get the precise position solution, but it is not a trivial thing for 
long base line, see Kennedy (2003). And to fix integer ambigui-
ties, noisier L1/L2 iono-free measurement is used. When differ-
entiation is applied, noise is amplified and will influence the 
accuracy of acceleration. 

The other method is to get carrier phase acceleration by differ-
entiate the carrier phase first, and then using the acceleration of 
GPS satellite to derive the vehicle acceleration, it also be called 
as the carrier phase method. The main advantages include that 
fixing integer ambiguities is not needed anymore, position accu-
racy can be relaxed to about 10m, and smoother acceleration can 
be got since iono-free measurement is not needed, see Jekeli et al. 
(1997) and Kennedy (2003). 

Jekeli tested the carrier phase method using both static and 



dynamic data. The baseline length of the static data and dynamic 
data is about 2.5km and 1200km respectively. For static data, the 
acceleration can be determined to an accuracy of 1mGal for 40s 
averages. But for dynamic data, the result is far from satisfactory,  
The mean and standard derivation of the difference between the 
carrier phase method and the position method is 1.05mGal and 
5.18mGal, see Jekeli et al. (1997). Currently, flying at a constant 
velocity is required in airborne gravimetry, and data during turn-
ing is discarded for lower quality, see Kennedy (2003). In fact, it 
is hard to guarantee this requirement at all time for the existance 
of gust, even a autopilot is equipped. So, improving the dynamic 
performance of acceleration determination is valuable for air-
borne gravimetry. 

Through analysis, it is found that the performance degradation 
in dynamic environment results from the simplification of the 
GPS carrier phase observable model. And an iterative algorithm 
is presented to compensate the model error. Using a dynamic 
GPS data from an aeromagnetic survey, the importance of this 
compensation is showed in section 5. 

 
 

2. Commonly Used Carrier Phase Observable 
Model 

 
In the following, satellites are indicated in the superscript and 

receivers in the subscript. The remote receiver is indicated as ‘k’, 
while the base receiver is indicated as ‘m’. Bolded quantities 
denote vectors or matrices. Superscript dots indicate time differ-
entiation. 

In Jekeli et al. (1997) and Kennedy (2003), the used carrier 
phase observable model is 
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Where 
kt , jt  are the epochs of the reception and transmission of the 

carrier phase; 
j

kρ  is the observed phase pseudorange between satellite j 
and receiver k; 

λ  is the wavelength; 
c  is the speed of light in vacuum; 

j
kR  is the distance from the satellite j at transmit time to 

the receiver k at receive time; 
j

kN  is the integer ambiguity number; 

ktδ  is the clock error of receiver k; 
jtδ  is the clock error of satellite j; 

j
kRΔ  is the ephemeris error; 

,
j
k ionoΔ  is the ionospheric delay; 

,
j
k tropΔ  is the tropspheric delay; 

,
j
k multiΔ  is the multipath effect; 
j

kε  is the remaining noise; 
 
The first and second time derivatives of the phase pseudorange, 

called the phase pseudorange rate and pseudorange acceleration, 
are given by, see Jekeli et al. (1997) 

( ) ( , ) ( ( ) ( )) ( )j j j j j j
k k k k k k k kt R t t c t t t t tρ δ δ ε= + − +     (3) 

( ) ( , ) ( ( ) ( )) ( )j j j j j j
k k k k k k k kt R t t c t t t t tρ δ δ ε= + − +    (4) 

Where 
j

kR  is the line-of-sight range rate between receiver k and 
satellite j; 

j
kR  is the line-of-sight range acceleration between re-

ceiver k and satellite j; 
 

In Eq.(3)(4), the first and second derivatives of the ephemeris 
error, ionospheric delay, tropospheric delay and multipath effect 
are lumped into the remaining noise j

kε  and j
kε .  

To eliminate the receiver clock error, the “single between-
satellite'' differenced phase pseudorange rate and pseudorange 
acceleration can be formed 

, , ,( ( ) ( ))i j i j i i j j i j
k k kR c t t t tρ δ δ ε= + − +       (5) 
, , ,( ( ) ( ))i j i j i i j j i j

k k kR c t t t tρ δ δ ε= + − +       (6) 

In Eq.(5)(6), the time arguments have been omitted for sim-
plicity. To further eliminate the satellite clock error, double dif-
ferenced phase pseudorange rate and pseudorange acceleration 
can be formed 

, , ,
, , ,

i j i j i j
m k m k m kRρ ε= +       (7) 
, , ,
, , ,

i j i j i j
m k m k m kRρ ε= +       (8) 

In the derivation of the double differenced phase pseudorange 
rate and pseudorange acceleration, one subtle term that the satel-
lite phases not arriving at the two receivers simultaneously for 
the path lengths are different is omitted. Jekeli analysized the 
effect of the term on the double differenced phase pseudorange, 
and thought that it can be ignored for a baseline length of 100km, 
see Jekeli et al. (1997). And satellite positions, velocities and 
accelerations at every second are used to derive the acceleration 
of the vehicle, see Kennedy (2003). 

Practically, to ignore the term is reasonable for relative posi-
tioning when baseline is shorter than 100km. But is it really rea-
sonable for the determination of acceleration? In the next section, 
this problem will be analysized. 

 
 

3. Error of Simplified Carrier Phase Observable 
Model 
 

3.1 Carrier Phase Observable Model 
 
Eq.(2) can be expressed as the function of kt , the reception 

epoch of the carrier phase, see Zhang (2004) 
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Where, kt  is simplified as t . 
Eq.(9) can be rearranged as  
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Where  
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Comparing Eq.(2) and Eq.(10), they are the same from the 
form. ( )j

k tδρ  can be treated as phase pseudorange error coming 
from the simplification of observable model. The first and sec-
ond time derivatives of ( )j

k tδρ  are phase pseudorange rate error 

( )j
k tδρ  and pseudorange acceleration error ( )j

k tδρ . 
   We will study the three terms on the right side of Eq.(11) 
respectively. 
 
 
3.2 Testing Data 
 
  We use one static data and one dynamic data to test the magni-
tude of ( )j

k tδρ , ( )j
k tδρ  and ( )j

k tδρ . The baseline length of the 
static data is about 22.9km. The dynamic data is coming from an 
aeromagnetic survey. Both are provided by AGRS (Aerogeo-
physical Survey and Remote Sensing Center, China). Figure 1 
shows the horizontal profile of the dynamic data, the red star * 
denotes the start point. Figure 2 and 3 show the curves of posi-
tion and velocity respectively. Figure 4 shows the separation 
between master and remote receiver. 
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Figure 1. Horizontal profile of dynamic data  
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Figure 2. The curves of position 
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Figure 3. The curves of velocity 

 

 
Figure 4. Separation between master and remote 

 
 
3.3 Error of The First Term 
   
  Figure 5 shows the double differenced phase pseudorange 
error, pseudorange rate error and pseudorange acceleration error 
for the static data. The forth curve in Figure 5 is the phase pseu-
dorange acceleration error after 120s low pass filtering. From 
this figure, we can see that the error of the first term is small 
enough to be ignored. 
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Figure 5. Errors of the first term(static data) 

 
Figure 6 shows the double differenced errors for dynamic data. 

From the first curve of Figure 6 and Figure 4, we can see that the 
phase pseudorange error is related to the separation between 
master and remote. From Figure 6 and Figure 2~3, we can see 
that the phase pseudorange rate and pseudorange acceleration 
errors are very small when the plane is flying at a constant, but 
the errors will be enlarged more than 100 times during maneu-
vers. The reason is that the motion of the remote receiver is unre-
lated to the master receiver, so the errors can not be weakened 
through difference processing. 
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Figure 6. Errors of the first term(dynamic data) 
 
 
3.4 Error of The Second Term 
 
  The clock error ktδ  of a NovAtel OEM 4 receiver is less 
than 200ns, see Kennedy (2003). Here, we use the maximum, ie , 

200kt nsδ = . 
  Figure 7 shows the errors between remote receiver and satel-
lite PRN=1, dynamic data is used. From this figure, we can see 
that the errors of the second term can be ignored. 
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Figure 7. Errors of the second term(dynamic data) 

 
 
3.5 Error of The Third Term 
 
  Figure 8 shows the errors between remote receiver and satel-
lite PRN=1 for static data. It can be seen that the errors of the 
third term can be ignored.  
  Figure 9 shows the double differenced errors of the third term 
for dynamic data. Although the errors are much smaller than 
those of the first term, they can not be ignored for high accuracy 
acceleration determination.  

Through the above analysis, three conclusions can be summa-
rized as follows: 
  (1) the phase pseudorange acceleration error of the first term 
can reach several hundred mGal during maneuvers, it must be 
compensated to derive the vehicle acceleration. 

(2) the pseudorange acceleration error of the third term can 
reach several mGal during maneuvers, it also needs to compen-

sated to improve the accuracy of vehicle acceleration. 
(3) the pseudorange acceleration error of the second term is 

small enough to be ignored. 
 
In the next section, we will discuss how to determine the vehicle 
acceleration using the carrier phase observables. 
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Figure 8. Errors of the third term(static data) 
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Figure 9. Error of the third term(dynamic data) 

 
 

4. Math Model of Acceleration Determination 
 
  The elaborate derivation of the algorithm of the carrier phase 
method can be found in Jekeli et al. (1997) and Kennedy (2003). 
Here, only main equations are presented. 
  The basic function to determine vehicle acceleration is  

( ) ( )221j j j j j
k k k k kj

k

R R
R

⎡ ⎤= ⋅ − + −⎢ ⎥⎣ ⎦
e x x x      (12) 

Where  
j

kR  is the line-of-sight range acceleration between re-
ceiver k and satellite j; 

j
kR  is the line-of-sight range rate between receiver k and 

satellite j; 
j

kR  is the line-of-sight range between receiver k and satel-
lite j; 

j
ke  is the unit direction vector between receiver k and 



satellite j; 
jx  is the acceleration of satellite j; 
j
kx  is the relative velocity between receiver k and satellite 

j; 
kx  is the acceleration of receiver k to be determined. 

 
Except for the receiver acceleration, the remaining unknown 

in Eq.(12) is the satellite-receiver relative velocity. It can be 
solved using the equation. 

j j j
k k kR = ⋅e x           (13) 

The “single between-satellite'' differenced pseudorange 
rate(Eq.(5)) or double differenced pseudorange rate(Eq.(7)) can 
be used to solve for relative velocity j

kx . 
  Now we use double differenced pseudorange accelera-
tion(Eq.(8)) to solve for receiver acceleration kx . Combining 
Eq.(12) and Eq.(8), the system equation for satellite i, satellite j, 
remote receiver k and master receiver m is  
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To solve for receiver acceleration kx , a minimum of four satel-
lites is required. For a total of n satellites, Eq.(14) can be written 
as a matrix form, 

k= −V Ax L       (15) 
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The least square estimation for receiver acceleration is  

T -1( )k = ⋅ ⋅ ⋅x A A A L       (16) 

5. Analysis in Acceleration Domain 
 

In this section, we will use both the static data and dynamic 
data to evaluate the effect of the compensation of model error. 
For Eq.(9) is a implicit equation, the unknown line-of-sight 
range rate and acceleration present on the right side of Eq.(9), so 
an iterative algorithm is used to compensate the model error 

( )j
k tδρ . At the initial step(no iterative), ( )j

k tδρ  is set to zero, 
that is equivalent to Eq.(2); Then at the first iteration step, the 
calculated receiver velocity and acceleration can be used to com-
pensate for the model error; And it is similar for the next steps. 
  For static data, the acceleration of the remote receiver is zero 
and this provides a truth-value. The statistics of the acceleration 
error are listed in Table 1. 
 

Table 1. Statistics of the error(static data )  
Mean Value(mGal) Standard Deviation(mGal)iteration

 step North East Down North East Down
0 0.054 0.038 -0.121 0.690 0.734 1.715
1 0.054 0.038 -0.121 0.689 0.739 1.715
2 0.054 0.037 -0.121 0.690 0.738 1.715

 
It can be seen that the acceleration error due to the model sim-

plification is very small, that is to say the adoption of Eq.(2) is  
valid for static data. The curves of the first iteration step are 
shown in Figure 10. 

 
Figure 10. Acceleration error of static data 

 
  For dynamic data, there is no standard value for comparison. 
Acceleration computed from the position method is used as 
comparison values. Identical differentiators and low pass filters 
are applied to both the carrier phase method and the position 
method to get comparable accelerations.  

The statistics of the difference between the carrier phase 
method and the position method are listed in Table 2. The curves 
when no iteration is used are shown in Figure 11. The curves of 
the first iteration step are show in Figure 12. It should be noted 
that the whole data including turning sections is used for com-
parison.  

 
Table 2. Statistics of the difference(dynamic data )  

Mean Value(mGal) Standard Deviation(mGal)iteration
 step North East Down North East Down

0 -0.093 -0.148 0.114 2.968 2.428 5.586
1 0.273 0.489 2.631 140.0 184.8 20.48
2 0.270 0.492 2.643 140.0 184.9 20.48
3 0.271 0.499 2.641 140.0 184.9 20.49



  At first glance, the difference between the two methods seems 
to be amplified by the iterative algorithm. There may be two 
possible but opposite reasons. One is the foregoing analysis is 
wrong, the other is that neither the position method nor the car-
rier phase method using simplified model can work properly for 
dynamic data. Care should be taken on Table 2, the difference 
converges to constant value after the first iteration step. Suppos-
ing that the first reason is tenable, the difference should not con-
verge. So we can concluded that the second reason is the fact. It 
seems that the horizontal components are more sensitive to the 
simplification of observable model, it can be explained that the 
maneuvers are often done in the horizontal plane. 

To further validate this conclusion, multi master station dy-
namic data should be used to test the internal consistency be-
tween different remote-master combinations. 

 

 
Figure 11. Difference between two methods(no iteration) 

 

 
Figure 12. Difference between two methods(1st iteration) 

 
 
6. Conclusion 
 

The determination of the vehicle kinematic acceleration is one 
of the key issues in airborne gravimetry. Currently, carrier phase 
DGPS is widely used to get the vehicle kinematic acceleration. 
The commonly used method is to twice differentiate the position 
calculated by commercial DGPS software. The other is called the 
carrier phase method, which has many advantages over the for-
mer, such as fixing integer ambiguities is not needed anymore, 
position accuracy can be relaxed to about 10m, etc. 

In this paper, the carrier phase observable model for accelera-
tion determination is analysized. It is found the commonly used 
simplified model can not work properly in dynamic environment. 
An iterative algorithm is used to compensate the model error.  

Multi master station dynamic data should be used to the test 
the validity of the new algorithm in the future work.  
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