• Title/Summary/Keyword: air-cavity

Search Result 502, Processing Time 0.025 seconds

Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins (제어핀이 달린 수중 물체의 공동 수치해석)

  • Kim, Hyoung-Tae;Choi, Eun-Ji;Knag, Kyung-Tae;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.

Numerical Analysis of Turbulent Combustion Flow in Scramjet Combustors (스크램제트 연소기 내의 난류 연소 유동 해석)

  • Choi, Jeong-Yeol;Won, Su-Hee;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.261-267
    • /
    • 2005
  • A comprehensive DES quality numerical analysis has been carried out for reacting flows in constant-area and divergent scramjet combustor configuration with and without a cavity. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel-air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the pervious studies. Much of the flow unsteadiness is related not only the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Fabrication of 3-dimensional microstructures for bulk micromachining (블크 마이크로 머신용 미세구조물의 제작)

  • 최성규;남효덕;정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.741-744
    • /
    • 2001
  • This paper described on the fabrication of microstructures by DRIE(Deep Reactive Ion Etching). SOI(Si-on-insulator) electric devices with buried cavities are fabricated by SDB technology and electrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -760 mm Hg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing(1000$^{\circ}C$, 60 min.), the SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated microstructures by DRIE as well as a accurate thickness control and a good flatness.

  • PDF

The Fabrication of SOB SOI Structures with Buried Cavity for Bulk Micro Machining Applications

  • Kim, Jae-Min;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.739-742
    • /
    • 2002
  • This paper described on the fabrication of microstructures by DRIE(deep reactive ion etching). SOI(Si-on-insulator) electric devices with buried cavities are fabricated by SDB technology and electrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing($1000^{\circ}C$, 60 min.), The SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated microstructures by DRIE as well as an accurate thickness control and a good flatness.

  • PDF

A free vibration analysis of sound-structure interaction plate having a small cut-out (부분적으로 열린 구조-음향 연성평판의 자유진동해석)

  • Oh, Jae-Eung;Rhee, Dong-Ick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1666-1673
    • /
    • 1997
  • In order to investigate the characteristics of sound-structure interaction plate having a cut-out, we modeled a rectangular cavity and the flexible plate of the cavity. Because the particle velocity of air is the same as that of plate on the plate, we could easily redefine vibration equation using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method. For the change of vibration characteristics, the effect of sound-structure interaction is more dominant than that of cut-out size.

A Numerical Study on the Two-Phase Natural Circulation Flow in Reactor Cavity under External Vessel Cooling (원자로 외벽냉각시 원자로공동에서의 자연순환 이상유동에 대한 수치적 연구)

  • Kim, Hong-Min;Seo, Jun-Woo;Kim, Kwang-Yong;Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.781-785
    • /
    • 2003
  • This work presents a numerical analysis of two-phase natural circulation flow in reactor cavity under external vessel cooling. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations for multiphase flows with zero equation turbulence model are solved to predict the shear key effect on the circulation rate of cooling water and the distribution of void fraction according to the different mass flow of inlet air. Results show that shear key has a positive effect on the circulation rate of cooling water and induce a local increase of void fraction below the shear key, but not remarkably.

  • PDF

Visualization of ventilated supercavitation phenomena around a moving underwater body (수중 운동체 주변에 형성되는 환기 초공동(ventilated supercavitation) 현상 가시화)

  • Chung, Jaeho;Cho, Yeunwoo
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.26-29
    • /
    • 2015
  • A laboratory experiment was carried out to observe and visualize ventilated supercavitation phenomena around a moving underwater body which is attached to a newly designed high-speed (Max. 20 m/s) carriage system in a wave tank. Compared to the existing many other experimental studies using cavitation tunnels, where the body is at rest and the fluid is in motion in a bounded or closed environment, the present experimental study deals with super-cavity formation in unbounded or free-surface bounded environments, where the body is in motion and the fluid is at rest. Main attention is paid to the effective visualization of the steady-state cavity formations around a moving body and, those cavity formations are reported pictorially according to the body speed, ventilated air-pressure, and with or without a cavitator.

Numerical Study of Flow Characteristics of Scramjet with a Cavity Flameholder (스크램제트 공동 화염 보염기 형상에 따른 유동 특성의 수치적 연구)

  • Jang, Won-Geun;Lee, Hak-Jin;Choe, Seong-Im
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.603-609
    • /
    • 2014
  • 차세대 제트 추진기관으로 주목받고 있는 스크램제트 엔진의 핵심은 연소기 내부에서의 성공적인 초음속 연소를 필요로 한다. 초음속 연소는 공기-연료 혼합(fuel-air mixing)의 정도에 따라 연소효율이 영향을 받게 된다. 공동형 화염 보염기(cavity flameholder)는 재순환 영역(recirculation zone)을 생성하여 연료 혼합의 효율을 높여 지속적인 초음속 연소가 진행될 수 있는 시간을 제공한다. 본 연구에서는 EDISON 전산유체역학 소프트웨어를 이용하여 공동형 화염 보염기를 지나는 초음속 유동의 재순환 영역과 전압력 변화에 대한 전산 해석을 수행하였다. 초기 형상을 생성하여 유동 해석을 수행한 후, 3개의 형상 변수에 대한 매개 변수 연구를 통하여 공동의 형상과 위치에 따른 재순환영역의 제어가 가능함을 확인하였다.

  • PDF

Velocity and Temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper Channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, C.J.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.53-60
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators

  • Ahn, Byoung-Kwon;Jeong, So-Won;Kim, Ji-Hye;Shao, Siyao;Hong, Jiarong;Arndt, Roger E.A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • In this paper, we investigated physical characteristics of an artificial supercavity generated behind an axisymmetric cavitator. Experiments for the same model were carried out at two different cavitation tunnels of the Chungnam National University and the University of Minnesota, and the results were compared and verified with each other. We measured pressures inside the cavity and observed the cavity formation by using a high-speed camera. Cavitation parameters were evaluated in considering blockage effects of the tunnel, and gravitational effects on supercavity dimensions were examined. Cavity dimensions corresponding to the unbounded cavitation number were compared. In addition, we investigated how artificial supercavitation develops according to the combination of injection positions and direction.