• Title/Summary/Keyword: air force

Search Result 1,943, Processing Time 0.024 seconds

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

High Utility Itemset Mining over Uncertain Datasets Based on a Quantum Genetic Algorithm

  • Wang, Ju;Liu, Fuxian;Jin, Chunjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3606-3629
    • /
    • 2018
  • The discovered high potential utility itemsets (HPUIs) have significant influence on a variety of areas, such as retail marketing, web click analysis, and biological gene analysis. Thus, in this paper, we propose an algorithm called HPUIM-QGA (Mining high potential utility itemsets based on a quantum genetic algorithm) to mine HPUIs over uncertain datasets based on a quantum genetic algorithm (QGA). The proposed algorithm not only can handle the problem of the non-downward closure property by developing an upper bound of the potential utility (UBPU) (which prunes the unpromising itemsets in the early stage) but can also handle the problem of combinatorial explosion by introducing a QGA, which finds optimal solutions quickly and needs to set only very few parameters. Furthermore, a pruning strategy has been designed to avoid the meaningless and redundant itemsets that are generated in the evolution process of the QGA. As proof of the HPUIM-QGA, a substantial number of experiments are performed on the runtime, memory usage, analysis of the discovered itemsets and the convergence on real-life and synthetic datasets. The results show that our proposed algorithm is reasonable and acceptable for mining meaningful HPUIs from uncertain datasets.

A Systematic Method for Analyzing Human Factors-Related Accidents to Improve Aviation Safety in the Air Force (공군의 항공안전 향상을 위한 인적요소 관련 사고의 체계적 분석 기법)

  • Lim, Chea-Song;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Aviation safety is increasingly important to secure the safety of the Republic of Korea Air Force (ROKAF). A critical activity for enhancing aviation safety is to analyze an accident throughly and to identify causes that can explain it reasonably. The results of such a systematic accident investigation can be effectively used for improving information displays, task procedures, and training systems as well as for reorganizing team structure and communication control system. However, the current practice of analyzing aviation accidents in ROKAF is too superficial and simple to diagnose them systematically. Additionally, the current practice does not give a full consideration to human factors that have been identified as main causes of most of the aviation accidents. With this issue in mind, this study aims to suggest a new approach to analyzing aviation accidents related to human factors.The proposed method is developed on the basis of several models and frameworks about system safety, human error, and human-system interaction. Its application to forty-two human factors-related accidents, which have occurred in ROKAF during the last ten years, showed that the proposed method could be a useful tool for analyzing aviation accidents caused by human factors.

Two-level Information Hiding Method for the Transmission of Military Secret Images (군사용 비밀 영상 전송을 위한 이단계 정보은닉 기법)

  • Kim, In-Taek;Kim, Jae-Cheol;Lee, Yong-Kyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.482-491
    • /
    • 2011
  • The purpose of this study is to design and implement a 2-level secret information transmission system which can be used for information hiding of images transmitted over various IT communication media. To increase the robustness of the hiding power, we combined the steganography method which inserts secret object into cover object to hide the very fact of information hiding itself, and the preprocessing stage to encrypt the secret object before the stego-insertion stage. As a result, even when the stego-image is broken by an attacker, the secret image is protected by encryption. We implemented the 2-level image insertion and extraction algorithm by using C++ programming language. Experiment shows that the PSNR values of stego-images of ours exceed 30.00db which is the threshold of human recognition. The methodology of this study can be applied broadly to the information hiding and protection of the military secret images.

The Multiple Traveling Purchaser Problem for Minimizing the Maximal Acquisition Completion Time in Wartime (전시 최장 획득완료시간 최소화를 위한 복수 순회구매자 문제)

  • Choi, Myung-Jin;Moon, Woo-Bum;Choi, Jin-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.458-466
    • /
    • 2011
  • In war time, minimizing the logistics response time for supporting military operations is strongly needed. In this paper, i propose the mathematical formulation for minimizing the maximal acquisition completion time in wartime or during a state of emergency. The main structure of this formulation is based on the traveling purchaser problem (TPP), which is a generalized form of the well-known traveling salesman problem (TSP). In the case of the general TPP, an objective function is to minimize the sum of the traveling cost and the purchase cost. However, in this study, the objective function is to minimize the traveling cost only. That's why it's more important to minimize the traveling cost (time or distance) than the purchase cost in wartime or in a state of emergency. I generate a specific instance and find out the optimal solution of this instance by using ILOG OPL STUDIO (CPLEX version 11.1).

Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway

  • Zhang, Ping;Liu, Wei;Yuan, Xiaoying;Li, Dongguang;Gu, Weijie;Gao, Tianwen
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.364-369
    • /
    • 2013
  • Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correlated with ET-1-induced pigmentation. After culturing with ET-1, melanin synthesis was significantly up-regulated, accompanying with increased expression of GPNMB and microphthalmia-associated transcription factor (MITF). Total number of melanosomes and melanin synthesis were sharply reduced via GPNMB-siRNA transfection, indicating ET-1-induced pigmentation by GPNMB-dependent manner. Furthermore, MITF-siRNA transfection strikingly inhibited GPNMB expression and the melanogenesis, and this suppression failed to be alleviated by ET-1 stimulation. All of these results demonstrated that ET-1 can trigger melanogenesis via the MITF-regulated GPNMB pathway. Taken together, these findings will provide a new explanation of how ET-1 induces hyperpigmentation, and possibly supply a new strategy for cosmetic studies.

Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption

  • Xu, Guofeng;Cai, Yuanwen;Ren, Yuan;Xin, Chaojun;Fan, Yahong;Hu, Dengliang
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2017
  • Magnetically suspended control & sensitive gyroscope (MSCSG) is a novel type of gyroscope with the integration of attitude control and attitude angular measurement. To improve the precision and reduce the power consumption of Lorentz Force-type Magnetic Bearing (LFMB), the air gap flux density distribution of LFMB has been studied. The uniformity of air gap flux density is defined to qualify the uniform degree of the air gap flux density distribution. Considering the consumption, the average value of flux density is defined as well. Some optimal designs and analyses of LFMB are carried out by finite element simulation. The strength of the permanent magnet is taken into consideration during the machining process. To verify the design and simulation, a high-precision instrument is employed to measure the 3-dimensional magnetic flux density of LFMB. After measurement and calculation, the uniform degree of magnetic flux density distribution reaches 0.978 and the average value of the flux density is 0.482T. Experimental results show that the optimal design is effective and some useful advice can be obtained for further research.

Path Planning of the Low Altitude Flight Unmanned Aerial Vehicle for the Neutralization of the Enemy Firepower (대화력전 임무수행을 위한 저고도 비행 무인공격기의 경로계획)

  • Yang, Kwang-Jin;Kim, Si-Tai;Jung, Dae-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.424-434
    • /
    • 2012
  • This paper presents a path planning algorithm of the unmanned aerial vehicle for the neutralization of the enemy firepower. The long range firepower of the ememy is usually located at the rear side of the mountain which is difficult to bomb. The path planner not only consider the differential constraints of the Unmanned Aerial Vehicle (UAV) but also consider the final approaching angle constraint. This problem is easily solved by incorporating the analytical upper bounded continuous curvature path smoothing algorithm into the Rapidly Exploring Random Tree (RRT) planner. The proposed algorithm can build a feasible path satisfying the kinematic constraints of the UAV on the fly. In addition, the curvatures of the path are continuous over the whole path. Simulation results show that the proposed algorithm can generate a feasible path of the UAV for the bombing mission regardless of the posture of the tunnel.

An Investigation of Radiation Heat Transfer on The Horizontal Fin of An External Fuel Tank by Flame of a Flying Flare (날아가는 섬광탄이 연료탱크 수평핀에 미치는 복사열전달 연구)

  • Jung, Daehan;Kang, Chihang;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.197-203
    • /
    • 2014
  • In this paper, the effect of unsteady radiation on the horizontal fin of an external fuel tank by flame of a flying flare was analysed to see the temperature increase of the fin and the thermal impact on the fin. Radiation between two surfaces was calculated using the concept of radiation resistance of surface and space including radiation, irradiation and shape factor for two flying trajectories of a flare, maximum temperature of 2200 K, emissivity of 0.95, flying velocity of 30 m/s, and thermal surface area of $0.01m^2$. The result shows that the temperature increase of the fin is 0.236 K, and the thermal effect on the fin is ignorable. And it was found that temperature is increased a little because small amount of heat energy can be radiated due to the short exposure time to the heat source.