
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, Aug. 2018                                   3606 
Copyright ⓒ 2018 KSII 

High Utility Itemset Mining over Uncertain 
Datasets Based on a Quantum Genetic 

Algorithm 
 

Ju Wang1, Fuxian Liu1 and Chunjie Jin1 
1 Air Force Engineering University 

Xi’an, 710051 - China 
[e-mail: yonglingjuke@outlook.com] 

*Corresponding author: Ju Wang 
 

Received August 27, 2017; revised  February 28, 2018; accepted March 19, 2018;  
published August 31, 2018 

 

Abstract 
 

The discovered high potential utility itemsets (HPUIs) have significant influence on a variety 
of areas, such as retail marketing, web click analysis, and biological gene analysis. Thus, in 
this paper, we propose an algorithm called HPUIM-QGA (Mining high potential utility 
itemsets based on a quantum genetic algorithm) to mine HPUIs over uncertain datasets based 
on a quantum genetic algorithm (QGA). The proposed algorithm not only can handle the 
problem of the non-downward closure property by developing an upper bound of the potential 
utility (UBPU) (which prunes the unpromising itemsets in the early stage) but can also handle 
the problem of combinatorial explosion by introducing a QGA, which finds optimal solutions 
quickly and needs to set only very few parameters. Furthermore, a pruning strategy has been 
designed to avoid the meaningless and redundant itemsets that are generated in the evolution 
process of the QGA. As proof of the HPUIM-QGA, a substantial number of experiments are 
performed on the runtime, memory usage, analysis of the discovered itemsets and the 
convergence on real-life and synthetic datasets. The results show that our proposed algorithm 
is reasonable and acceptable for mining meaningful HPUIs from uncertain datasets. 
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1. Introduction 

Knowledge discovery in datasets (KDD) is an emerging issue since important, implicit, 
unknown, and potentially useful information can be found from enormous datasets [1]. 
Frequent itemset mining (FIM), which is used to mine those itemsets that have occurrence 
frequencies that are no smaller than the minimum support threshold, is one of the most 
important and common tasks of data mining [2]. Apriori [3], which is based on breadth-first 
search, and FP-growth [4], which is based on depth-first search, are well-known fundamental 
FIM algorithms. However, these traditional FIM algorithms consider only whether the items 
are present or not in the transactions and assign the same profit value for every item. In 
real-life applications, several other factors, such as the quantity and cost, must be included in 
the FIM to discover the more valuable itemsets that allow retailers and managers to adopt 
more profitable business strategies [5]. For example, a shopper buys milk every month or 
every few weeks, but he only buys a computer every few years. There is no doubt that the 
frequency of buying milk is larger than that of buying a computer. However, it is difficult to 
say which profit is larger for the retailers, which is the key point from their perspective.  

To address this problem, the issue of high utility itemsets mining (HUIM) is designed to 
mine itemsets that have utilities that are higher than the minimum utility threshold. In real-life 
applications, the utility of the itemsets can be defined by the users, such as the profit, weight 
and cost. Because the goal of HUIM is to identify items or itemsets in transactions that bring 
considerable profit to retailers, the discovered itemsets can be used in a variety of areas, such 
as retail marketing, web click analysis, and biological gene analysis [6]. Chan et al. [7] first 
developed a mining framework to discover the top-k closed utility itemsets. Then, Yao et al. [5] 
designed an approach to discover HUIs by considering the purchase quantity and the profit of 
the items. Since the above algorithms suffer from the problem of combinatorial explosion, Liu 
et al. [8] proposed a two-phase model, which can prune the unpromising HUIs in the early 
stage by the downward closure of the transaction weighted utility. Furthermore, Lin et al. [9] 
designed a high utility pattern (HUP) tree for mining HUIs, and many improved algorithms 
have been proposed based on the designed tree structure. Additionally, HUITWU [10] is a 
state-of-the-art algorithm for HUIM based on a tree structure, and it can derive a complete 
condensed representation of HUIs. In contrast to the traditional HUIM, Kannimuthua and 
Premalatha [11] first designed the GA-based algorithm to mine HUIs with a ranked mutation. 
The results show that it can handle large numbers of distinct items and transactions. However, 
a very large computation is required to set an appropriate initial population and the parameters 
of crossover and mutation that are required in the evolution process of the GAs. Then, Lin et al. 
[12] proposed a binary particle swarm optimization (PSO) approach to mining HUIs and an 
OR/NOR structure to reduce the invalid combinations for discovering HUIs. Comparison 
experiments show that the PSO-based algorithm has fewer parameters and better performance 
than the GA-based algorithm. These two algorithms achieve better performance in addressing 
the problem of HUIM based on evolutionary algorithms. However, most HUIM algorithms are 
developed to handle precise datasets, which ignore the existence probability of items or 
itemsets that could be introduced when data is collected from noisy data sources such as 
wireless sensors and WiFi systems. 
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In fact, for uncertain datasets, the itemsets with high utility and high existence 
probabilities are useful to users, not the itemsets with only one of these properties. For 
example, shopper A buys milk that has a quantity of 100, and its profit is 0.5 with a probability 
of 0.91, and shopper A buys a computer that with a quantity of 1, and its profit is 400 with a 
probability of 0.05. According to this situation, retailers could introduce a large amount of 
milk into their shops and reduce the number of computers, while the traditional utility of milk 
is smaller than that of a computer. To the best of our knowledge, Lin et al. [13] proposed 
PHUI-UP based on a two-phase model and PHUI-List based on a list structure, while Lan et al. 
[14] proposed UHUI-apriori based on Apriori, and these are the only algorithms that are used 
to solve the problem of HUIM over uncertain datasets. The main challenges of these 
approaches are the non-downward closure property and combinatorial explosion, especially 
when the number of items or transactions in the datasets are relatively large.  

In this paper, to handle the problem of the non-downward closure property, an upper 
bound of the potential utility (UBPU) is developed to prune the unpromising itemsets in the 
early stage. To handle the problem of combinatorial explosion, evolutionary computation, 
which can find the optimal solutions quickly in very large datasets, is introduced. While 
HUPEumu-GRAM [11] and HUIM-BPSO [12] are proven to be efficient in discovering HUIs 
from condensed datasets, both of these approaches still have the problem of falling into partial 
optimal solutions, especially in the late stage of the evolution process and when the parameters 
are set incorrectly. The main reason for this problem arises from the diversity of population 
being not sufficient and having too many parameters that must be set. To handle these 
shortcomings, many new evolutionary algorithms have been proposed, such as the QGA [15], 
shuffled frog-leaping algorithm (SFLA) [16], improved discrete cuckoo search (IDCS) [17], 
and multi-population artificial bee colony (MPABC) [18]. Whereas the QGA is a relatively 
outstanding approach, its advancements are mainly reflected in the following aspects. First, 
the quantum chromosome can be used to characterize multiple states simultaneously, which 
implies strong parallelism and a better ability to maintain the diversity of the population. 
Second, the search process driven by the quantum rotation gate is the procedure that 
approaches the optimal solution according to the optimal individual’s information. This 
method makes the population evolve to the best area with a great probability and accelerates 
the convergence speed. Third, to avoid local extrema, mutation is realized by the quantum 
non-gate. Fourth, when the size of the population and the maximum number of iterations are 
given, no other parameters are needed. Lastly, compared to traditional evolutionary 
computation, the QGA has a smaller population without affecting its performance. Therefore, 
aiming at the issue of HUIM over uncertain datasets, a QGA is introduced in this paper. The 
key contributions of this paper are described below.  

1. Discovering HPUIs based on evolutionary computation over uncertain datasets is a 
relatively new issue. In this paper, a QGA-based algorithm, called HPUIM-QGA, is proposed 
to address this issue. It has fewer parameters that must be set, a better ability to maintain the 
diversity of the population, and a higher convergence speed. 

2. A novel type of itemset called a high potential utility itemset (HPUI) is designed, 
which represents the itemsets that have high utility and a high existence probability.  

3. Because potential utility does not hold the downward closure property in the mining 
process, an upper bound of the potential utility (UBPU) is developed to prune the un-useful 
itemsets in the early stage. This approach is an overestimation for the potential utility and can 
hold the downward closure property.  
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4. To avoid the meaningless and redundant itemsets that are generated in the evolution 
process of a QGA, a pruning strategy is proposed in this paper.  

5. Extensive experiments are conducted on real-life and synthetic datasets to evaluate the 
performance of the proposed algorithm. The results show that the proposed algorithm can 
efficiently identify HPUIs over uncertain datasets.  

The remainder of this paper is organized as follows. In section 2, we state the problem of 
HUIM over uncertain datasets and present our new definitions. In section 3, we develop our 
proposed HPUIM-QGA algorithm to address the stated problem. In section 4, our 
experimental results are presented and analyzed. Finally, in section 5, conclusions are drawn. 

2. Preliminaries and problem statement 

2.1 Preliminaries 
𝐼𝐼 = {𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝐿𝐿} is a finite set of 𝑛𝑛 distinct items in an uncertain dataset 𝐷𝐷 = {𝑇𝑇1,𝑇𝑇2,⋯ ,𝑇𝑇𝑚𝑚}. 
A transaction 𝑇𝑇𝑞𝑞 = {𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑙𝑙}(1 ≤ 𝑙𝑙 ≤ 𝐿𝐿) in 𝐷𝐷 contains a number of items, and each item 
𝑖𝑖𝑝𝑝 in 𝑇𝑇𝑞𝑞 is associated with an internal utility 𝑖𝑖𝑖𝑖�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� and existence probability 𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�, 
which indicates a quantity value of 𝑖𝑖𝑝𝑝  in 𝑇𝑇𝑞𝑞  and the likelihood of 𝑖𝑖𝑝𝑝  being present in 𝑇𝑇𝑞𝑞 , 
respectively [19]. In addition, the external utility of item 𝑖𝑖𝑝𝑝 in 𝐼𝐼 is represented by 𝑒𝑒𝑒𝑒�𝑖𝑖𝑝𝑝�, 
which indicates the profit value of 𝑖𝑖𝑝𝑝.  

An example of uncertain datasets from a market is shown in Table 1(a). The external 
utility of the example is shown in Table 1(b), which is also called a profit table.  

 
Table 1(a). An example of uncertain datasets. 

TID Transaction 
𝑇𝑇1 (𝐴𝐴, 1,0.81)(𝐶𝐶, 1,0.79)(𝐷𝐷, 2,0.93) 
𝑇𝑇2 (𝐴𝐴, 1,0.88)(𝐶𝐶, 6,0.92) 
𝑇𝑇3 (𝐴𝐴, 1,0.83)(𝐶𝐶, 3,0.91)(𝐷𝐷, 3,0.86)(𝐸𝐸, 1,0.76) 
𝑇𝑇4 (𝐵𝐵, 4,0.62)(𝐶𝐶, 3,0.89)(𝐷𝐷, 3,0.86) 
𝑇𝑇5 (𝐶𝐶, 2,0.87)(𝐹𝐹, 3,0.63) 
𝑇𝑇6 (𝐴𝐴, 2,0.93)(𝐹𝐹, 4,0.76) 

 
Table 1(b). Profit table of the example. 

Item 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷 𝐸𝐸 𝐹𝐹 
Profit 3 6 5 8 4 3 

 
Here, (𝐴𝐴, 1,0.81) in the first row of Table 1(a) can be illustrated as a shopper 𝑇𝑇1 with a 

probability of 0.81 buys item 𝐴𝐴 in a quantity of 1, for which the profit is 3. It is clear that the 
itemsets with high probability and high utility are useful to researchers. Therefore, the aim of 
this paper is established to discover such itemsets. Related definitions are given below.  
Definition 1 (Item utility). The utility of an item 𝑖𝑖𝑝𝑝  in a transaction 𝑇𝑇𝑞𝑞  is defined as the 
product of the external and internal utility of 𝑖𝑖𝑝𝑝, which is denoted as 
 

𝑢𝑢�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� = 𝑖𝑖𝑖𝑖�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� × 𝑒𝑒𝑒𝑒�𝑖𝑖𝑝𝑝�. 
 

For the example in Table 1, the item utility of {𝐷𝐷} in 𝑇𝑇1 is calculated as 𝑢𝑢(𝐷𝐷,𝑇𝑇1) =
𝑖𝑖𝑖𝑖(𝐷𝐷,𝑇𝑇1) × 𝑒𝑒𝑒𝑒(𝐷𝐷) = 2 × 8 = 16.  
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Definition 2 (Itemset utility in a transaction). The utility of an itemset 𝑋𝑋 in a transaction 𝑇𝑇𝑞𝑞 is 
defined as  
 

𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� = � 𝑢𝑢�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�.
𝑖𝑖𝑝𝑝∈𝑋𝑋

 

For the example in Table 1, the utility of {𝐴𝐴𝐴𝐴}  in 𝑇𝑇1  is calculated as 𝑢𝑢(𝐴𝐴𝐴𝐴,𝑇𝑇1) =
𝑢𝑢(𝐴𝐴,𝑇𝑇1) + 𝑢𝑢(𝐶𝐶,𝑇𝑇1) = 3 + 5 = 8.  

Definition 3 (Transaction utility). The utility of a transaction 𝑇𝑇𝑞𝑞 is defined as  
 

𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� = � 𝑢𝑢�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�
𝑖𝑖𝑝𝑝∈𝑇𝑇𝑞𝑞

. 

 
For the example in Table 1, the utility of 𝑇𝑇1  is calculated as 𝑡𝑡𝑡𝑡(𝑇𝑇1) = 𝑢𝑢(𝐴𝐴,𝑇𝑇1) +

𝑢𝑢(𝐶𝐶,𝑇𝑇1) + 𝑢𝑢(𝐷𝐷,𝑇𝑇1) = 3 + 5 + 16 = 24. 
Definition 4 (Itemset probability in a transaction). The probability of an itemset 𝑋𝑋  in a 
transaction 𝑇𝑇𝑞𝑞 is defined as  

𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞� = �𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�.
𝑖𝑖𝑝𝑝∈𝑋𝑋

 

 
For the example in Table 1, the probability of {𝐴𝐴𝐴𝐴} in 𝑇𝑇1 is calculated as 𝑝𝑝(𝐴𝐴𝐴𝐴,𝑇𝑇1) =

𝑝𝑝(𝐴𝐴,𝑇𝑇1) × 𝑝𝑝(𝐶𝐶,𝑇𝑇1) = 0.81 × 0.79 = 0.6399. 
Definition 5 (Potential utility of an itemset). Based on the expected support model, the 
potential utility of an itemset 𝑋𝑋 is defined as  
 

𝑝𝑝𝑝𝑝(𝑋𝑋) = � 𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� × 𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞�
𝑇𝑇𝑞𝑞∈𝐷𝐷∧𝑋𝑋⊆𝑇𝑇𝑞𝑞

. 

 
For the example in Table 1, the potential utility of {𝐴𝐴𝐴𝐴} in 𝐷𝐷 is calculated as 𝑝𝑝𝑝𝑝(𝐴𝐴𝐴𝐴) =

𝑢𝑢(𝐴𝐴𝐴𝐴,𝑇𝑇1) × 𝑝𝑝(𝐴𝐴𝐴𝐴,𝑇𝑇1) + 𝑢𝑢(𝐴𝐴𝐴𝐴,𝑇𝑇2) × 𝑝𝑝(𝐴𝐴𝐴𝐴,𝑇𝑇2) + 𝑢𝑢(𝐴𝐴𝐴𝐴,𝑇𝑇3) × 𝑝𝑝(𝐴𝐴𝐴𝐴,𝑇𝑇3) = 8 × 0.6399 +
33 × 0.8096 + 18 × 0.7553 = 45.4314. 
Definition 6 (High potential utility itemset (HPUI)). Given the minimum potential utility 
threshold 𝛿𝛿 (𝛿𝛿 ∈ [0,1]), an itemset 𝑋𝑋 is defined as an HPUI when it satisfies 
 

𝑝𝑝𝑝𝑝(𝑋𝑋) ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛿𝛿 × � 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�.
𝑇𝑇𝑞𝑞∈𝐷𝐷

 

 
For the example in Table 1, when 𝛿𝛿 = 0.2, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2 × 203 = 40.6, as 𝑝𝑝𝑝𝑝(𝐴𝐴𝐴𝐴) =

45.4314 > 40.6, itemset {𝐴𝐴𝐴𝐴} is a HPUI.  
For the uncertain dataset in Table 1, given the minimum utility threshold 𝛿𝛿1 = 0.2, 

according to the method in Ref. [8], Table 2 shows the discovered HUIs. When the minimum 
utility threshold 𝛿𝛿1 is equal to the minimum potential utility threshold 𝛿𝛿2, Table 3 shows the 
discovered HPUIs. 
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Table 2. The discovered HUIs when 𝛿𝛿1 = 0.2. 
Itemset Utility Itemset Utility 

{𝐶𝐶} 75 {𝐶𝐶𝐶𝐶} 99 
{𝐷𝐷} 64 {𝐴𝐴𝐴𝐴𝐴𝐴} 66 

{𝐴𝐴𝐴𝐴} 59 {𝐵𝐵𝐵𝐵𝐵𝐵} 63 
{𝐴𝐴𝐴𝐴} 46 {𝐶𝐶𝐶𝐶𝐶𝐶} 43 
{𝐵𝐵𝐵𝐵} 48 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 46 

 
 

Table 3. The discovered HPUIs when 𝛿𝛿2 = 0.2. 
Itemset Potential utility Itemset Potential utility 

{𝐶𝐶} 67.25 {𝐶𝐶𝐶𝐶} 75.8007 
{𝐷𝐷} 56.16 {𝐴𝐴𝐴𝐴𝐴𝐴} 41.5640 

{𝐴𝐴𝐴𝐴} 45.4314   
 
From Tables 2 and 3, it can be seen that only a few HUIs are HPUIs, and these represent 

the itemsets that have high utility and high existence probability. For example, itemset {𝐴𝐴𝐴𝐴} is 
an HUI, but it is not an HPUI since 𝑝𝑝𝑝𝑝(𝐴𝐴𝐴𝐴) = 33.5853 < 0.2 × 203. This phenomenon 
shows that fewer and more useful itemsets can be found when considering both the utility and 
existence probability.  

 

2.2 Problem statement 
For an uncertain dataset, given a predefined profit table and a user-specified minimum 
potential utility threshold 𝛿𝛿, the problem of HUIM over uncertain datasets is to discover the 
HPUIs that have a potential utility that is no smaller than 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.  
 

3. HUIM over uncertain datasets based on the QGA 

The designed QGA-based algorithm for mining HPUIs over uncertain datasets is composed of 
pre-processing, chromosome encoding, an updating process, a pruning strategy, and a fitness 
evaluation. In the pre-processing phase, 1-SHPUIs (the supersets for high potential utility 
itemsets) are discovered according to the two-phase model, which can greatly prune the 
unpromising itemsets based on UBPU’s downward closure property. In the chromosome 
encoding phase, an itemset in the transactions corresponds to a chromosome, which is encoded 
by quantum bits in alphabetic ascending order, and its length is decided by the number of 
1-SHPUIs. In the updating phase, a quantum rotation gate is introduced to update the quantum 
bits of the chromosomes. Then, a pruning strategy is designed to avoid the meaningless and 
redundant itemsets that are generated in the updating phase. In the fitness evaluation phase, the 
potential utility is regarded as the fitness function, which is used to evaluate the chromosomes. 
If the fitness value of the chromosome is higher than the minimum potential utility value, it is 
considered to be an HPUI and is placed in the set of HPUIs. These phases are repeated until the 
termination criteria are achieved. The algorithm flow of the designed algorithm is described in 
Fig. 1, and the details are described below. 
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Fig. 1. Algorithm flow of the proposed HPUIM-QGA 

 

3.1 Pre-processing 
From Tables 2 and 3, it can be seen that itemset {𝐴𝐴𝐴𝐴} is an HUI and HPUI, but item {𝐴𝐴} is not. 
This phenomenon shows that both the utility and potential utility do not have the downward 
closure property [3], which means that the potential utility constraint is neither monotone nor 
anti-monotone. Hence, unlike frequent itemset mining, the potential utility of an itemset 
cannot be used to prune the search space. In this paper, to address this problem, an upper 
bound of the potential utility (UBPU) is designed, which is an overestimation of the potential 
utility of the itemsets, and it can hold the downward closure property. UBPU will prune the 
un-useful itemsets in the early stage and perform the mining process of the HPUIs efficiently.  
Definition 7 (The upper bound of the transaction probability). The upper bound of the 
transaction probability for transaction 𝑇𝑇𝑞𝑞 is defined as 
 

𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� = max
𝑖𝑖𝑝𝑝∈𝑇𝑇𝑞𝑞

𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�. 

 
For the example in Table 1, the upper bound of the transaction probability for 𝑇𝑇1 is 

calculated as 𝑡𝑡𝑡𝑡(𝑇𝑇1) = max{𝑝𝑝(𝐴𝐴,𝑇𝑇1),𝑝𝑝(𝐶𝐶,𝑇𝑇1),𝑝𝑝(𝐷𝐷,𝑇𝑇1)} = max{0.81,0.79,0.93} = 0.93.  
Theorem 1 (𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�). The probability of an itemset 𝑋𝑋 in a transaction 𝑇𝑇𝑞𝑞 is no 
larger than the existence probability of the transaction 𝑇𝑇𝑞𝑞, which is denoted as 𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤
𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�.  
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Proof. Given 

𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞� = � 𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�
𝑖𝑖𝑝𝑝∈𝑇𝑇𝑞𝑞

≤ 𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� ≤ max
𝑖𝑖𝑝𝑝∈𝑇𝑇𝑞𝑞

𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� = 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�. 

 
Therefore, 𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�.  
Theorem 2 (𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�). The utility of an itemset 𝑋𝑋 in a transaction 𝑇𝑇𝑞𝑞 is no larger 
than the transaction utility of the corresponding transaction 𝑇𝑇𝑞𝑞 , which is denoted 
as 𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�.  
Proof. Given 
 

𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� = � 𝑢𝑢�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�
𝑖𝑖𝑝𝑝∈𝑋𝑋

≤ � 𝑢𝑢�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�
𝑖𝑖𝑝𝑝∈𝑇𝑇𝑞𝑞

= 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�. 

 
Therefore, 𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�.  
Definition 8 (The UBPU for an itemset). The UBPU for an itemset 𝑋𝑋 in 𝐷𝐷 is defined as 
 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑋𝑋) = � 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� × 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�
𝑋𝑋⊆𝑇𝑇𝑞𝑞⋀𝑇𝑇𝑞𝑞∈𝐷𝐷

. 

 
For the example in Table 1, the UBPU for {𝐴𝐴𝐴𝐴} in 𝐷𝐷 is calculated as 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝐴𝐴𝐴𝐴) = 24 ×

0.93 + 33 × 0.92 + 46 × 0.91 = 94.54. 
Definition 9 (The supersets for high potential utility itemsets (SHPUIs)). Given the minimum 
potential utility threshold 𝛿𝛿 (𝛿𝛿 ∈ [0,1]), an itemset 𝑋𝑋 is defined as an SHPUI when it satisfies 
 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑋𝑋) ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛿𝛿 × � 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�.
𝑇𝑇𝑞𝑞∈𝐷𝐷

 

 
For the example in Table 1, when 𝛿𝛿 = 0.2, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2 × 203 = 40.6, and when 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝐴𝐴𝐴𝐴) = 94.54 > 40.6, {𝐴𝐴𝐴𝐴} is an SHPUI. While 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝐴𝐴𝐴𝐴) = 16.74 < 40.6, {𝐴𝐴𝐴𝐴} is 
not an SHPUI.  
Theorem 3 (The downward property of UBPU). For an uncertain dataset 𝐷𝐷, 𝑋𝑋𝑘𝑘−1 is a subset 
of 𝑋𝑋𝑘𝑘, where the length of 𝑋𝑋𝑘𝑘−1 and 𝑋𝑋𝑘𝑘 is 𝑘𝑘 − 1 and 𝑘𝑘, respectively. If 𝑋𝑋 is an SHPUI, then 
any subset of it is also an SHPUI, which is denoted as 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑋𝑋𝑘𝑘� ≤ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑋𝑋𝑘𝑘−1�. 
Proof. Since 𝑋𝑋𝑘𝑘−1 ⊆ 𝑋𝑋𝑘𝑘, the set of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝑋𝑋𝑘𝑘 ⊆ 𝑇𝑇𝑞𝑞� ⊆ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝑋𝑋𝑘𝑘−1 ⊆ 𝑇𝑇𝑞𝑞�. Moreover, 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� 
and 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� are positive numbers according to their definitions. Thus, 
 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑋𝑋𝑘𝑘� = � 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� × 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�
𝑋𝑋𝑘𝑘⊆𝑇𝑇𝑞𝑞⋀𝑇𝑇𝑞𝑞∈𝐷𝐷

 

                               ≤ � 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� × 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�
𝑋𝑋𝑘𝑘−1⊆𝑇𝑇𝑞𝑞⋀𝑇𝑇𝑞𝑞∈𝐷𝐷

 

                          = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑋𝑋𝑘𝑘−1�.                        
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Therefore, if 𝑋𝑋𝑘𝑘 is an SHPUI, then any subset of it is also an SHPUI.  
Theorem 4 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ⊆ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠). For an uncertain dataset 𝐷𝐷, if an itemset 𝑋𝑋 is not an SHPUI, 
then no superset of 𝑋𝑋 is an HPUI.  
Proof. From Theorems 1 and 2, we can obtain that 𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� and 𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� ≤ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�, 
respectively. Moreover, 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� and 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� are positive numbers, and thus, 
 

𝑝𝑝𝑝𝑝(𝑋𝑋) = � 𝑢𝑢�𝑋𝑋,𝑇𝑇𝑞𝑞� × 𝑝𝑝�𝑋𝑋,𝑇𝑇𝑞𝑞�
𝑋𝑋⊆𝑇𝑇𝑞𝑞⋀𝑇𝑇𝑞𝑞∈𝐷𝐷

 

                     ≤ � 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞� × 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�
𝑋𝑋⊆𝑇𝑇𝑞𝑞∧𝑇𝑇𝑞𝑞∈𝐷𝐷

         

                     = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑋𝑋).                                       
 
Therefore, for an uncertain dataset 𝐷𝐷, if an itemset 𝑋𝑋 is not an SHPUI, then no superset of 𝑋𝑋 is 
an HPUI. 

Consider the example in Table 1, when the minimum potential utility threshold 𝛿𝛿2 is set 
to 0.2. Table 4 shows the discovered SHPUIs. 

 
Table 4. The discovered SHPUIs when 𝛿𝛿2 = 0.2. 

Itemset 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 Itemset 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 
{𝐴𝐴} 111.28 {𝐵𝐵𝐵𝐵} 56.07 
{𝐵𝐵} 56.07 {𝐶𝐶𝐶𝐶} 120.25 
{𝐶𝐶} 167.35 {𝐶𝐶𝐶𝐶} 41.86 
{𝐷𝐷} 120.25 {𝐷𝐷𝐷𝐷} 41.86 
{𝐸𝐸} 41.86 {𝐴𝐴𝐴𝐴𝐴𝐴} 64.18 

{𝐴𝐴𝐴𝐴} 94.54 {𝐴𝐴𝐴𝐴𝐴𝐴} 41.86 
{𝐴𝐴𝐴𝐴} 64.18 {𝐵𝐵𝐵𝐵𝐵𝐵} 56.07 
{𝐴𝐴𝐴𝐴} 41.86 {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} 41.86 
{𝐵𝐵𝐵𝐵} 56.07   

 
From Tables 3 and 4, it can be seen that the HPUIs are included in the discovered 

SHPUIs under the same conditions. More importantly, it can be obtained that the proposed 
UBPU has the downward property. Therefore, to decrease the search space, 1-SHPUIs are 
discovered based on UBPU in the pre-processing phase of our proposed HPUIM-QGA 
algorithm. Its calculation process is described below.  

First, calculate the UBPU of all of the items in the uncertain datasets according to 
Definition 8.  

Second, given a minimum potential utility threshold 𝛿𝛿 according to the users’ preference, 
𝑖𝑖𝑝𝑝 is considered to be a 1-SHPUI when 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑖𝑖𝑝𝑝� ≥ δ ×∑ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�𝑇𝑇𝑞𝑞∈𝐷𝐷 .  

For the example in Table 1, the UBPU of each item in it can be seen in Table 5. 
 

Table 5. UBPU of the example. 
Item 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷 𝐸𝐸 𝐹𝐹 
UBPU 111.28 56.07 167.35 120.25 41.86 25.65 

 
Set the minimum potential utility threshold 𝛿𝛿2 = 0.2, and we can obtain that 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

∑ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑞𝑞�𝑇𝑇𝑞𝑞∈𝐷𝐷 × 𝛿𝛿2 = 203 × 0.2 = 40.6. Therefore, items 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸  are 1-SHPUIs, and 
item 𝐹𝐹 is pruned. 
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3.2 Chromosome encoding 
Bit is a basic concept of classical information theory. In a quantum system, the information 
storage unit, similar to a physical medium, is in quantum bits. Compared with a classical bit, 
the state of a quantum bit |Ψ⟩ can be any linear superposition state between ‘0’ and ‘1’, which 
is denoted as 

|Ψ⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩.                                                                      (1) 
 

where |∙⟩ is Dirac notation, and it is used to describe the state. 0⟩ and 1⟩ are the spin-down 
and spin-up state, respectively. 𝛼𝛼 and 𝛽𝛽  are two complex constants. |𝛼𝛼|2  and |𝛽𝛽|2  are the 
probability of a quantum bit occurring in the ‘0’ and ‘1’ state, respectively, which satisfies 
|𝛼𝛼|2 + |𝛽𝛽|2 = 1. 

Based on the concept of quantum bits, a gene can be expressed and stored by one or more 
quantum bit(s). Furthermore, a chromosome consists of genes that can be expressed by several 
quantum bits. In this paper, an itemset in the transactions corresponds to a chromosome 𝐶𝐶𝑖𝑖, 
which is a set of quantum bits, and it is represented by 

 
𝐶𝐶𝑖𝑖 = �

𝛼𝛼𝑖𝑖1 ⋯ 𝛼𝛼𝑖𝑖𝑖𝑖
𝛽𝛽𝑖𝑖1 ⋯ 𝛽𝛽𝑖𝑖𝑖𝑖� , 1 ≤ 𝑖𝑖 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.                                               (2) 

 
where 𝑛𝑛 is the number of 1-SHPUIs found in the pre-processing phase, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the size 

of the population, which is set by the user, and �𝛼𝛼𝑖𝑖𝑖𝑖�
2 + �𝛽𝛽𝑖𝑖𝑖𝑖�

2 = 1,1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 . In the very 
beginning, all of the �𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖� are initialized as �1 √2⁄ , 1 √2⁄ �.  

Compared to a traditional encoding method, the state of every quantum bit is uncertainty, 
and it brings information in terms of different superposition states. Therefore, the quantum 
encoding method can make the population have more diversity. After a number of iterations, 
the value of |𝛼𝛼|2 or |𝛽𝛽|2 in some quantum bit tends to 0 or 1, and the diversity that results from 
this uncertainty will gradually disappear, and then, the algorithm is convergent finally. This 
process shows that quantum encoding has the ability to explore and develop.  

 

3.3 Updating process 
Based on the theory of quantum mechanics and quantum computing, a QGA encodes a 
chromosome by using quantum bits with superposition states. Through quantum gates that act 
on quantum superposition states in quantum computing, the probability amplitudes of all of 
the states can be changed correspondingly, which realizes the updating process of the 
chromosomes. In the HPUIM-QGA, this process is completed by using the quantum rotation 
gate 𝑈𝑈(𝜃𝜃) described below, which is usually employed in the coding problems of 0 and 1. 
 

𝑈𝑈(𝜃𝜃) = �cos(𝜃𝜃) -sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃)�                                                           (3) 

 
 
 
 
 



3616                    Ju Wang et al.: High Utility Itemset Mining over Uncertain Datasets Based on a Quantum Genetic Algorithm 

where 𝜃𝜃 is the rotation angle, and the corresponding update operation of the quantum bits 
is described as 

 

�
𝛼𝛼𝑖𝑖𝑖𝑖′

𝛽𝛽𝑖𝑖𝑖𝑖′
� = �

cos�𝜃𝜃𝑖𝑖𝑖𝑖� -sin�𝜃𝜃𝑖𝑖𝑖𝑖�
sin�𝜃𝜃𝑖𝑖𝑖𝑖� cos�𝜃𝜃𝑖𝑖𝑖𝑖�

� �
𝛼𝛼𝑖𝑖𝑖𝑖
𝛽𝛽𝑖𝑖𝑖𝑖� .                                                  (4) 

 
where �𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖�

𝑇𝑇 is the j-th quantum bit of the i-th chromosome in the current population, 
𝜃𝜃𝑖𝑖𝑖𝑖 is the corresponding rotation angle, and its value ∆𝜃𝜃𝑖𝑖𝑖𝑖 and sign 𝑠𝑠�𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖� are adjusted by 
the strategy shown in Table 6, which can make the population evolve to the optimal solution 
quickly by considering the information of the best individual.  

 

Table 6. Selection strategy of rotation angle. 

𝑋𝑋𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗 
𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)
> 
𝑝𝑝𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

∆𝜃𝜃𝑖𝑖𝑖𝑖 
𝑠𝑠�𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖� 

𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 > 0 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 < 0 𝛼𝛼𝑖𝑖𝑖𝑖 = 0 𝛽𝛽𝑖𝑖𝑖𝑖 = 0 
0 0 F 0 0 0 0 0 
0 0 T 0 0 0 0 0 
0 1 F 0.01π +1 -1 0 ±1 
0 1 T 0.01π -1 +1 ±1 0 
1 0 F 0.01π -1 +1 ±1 0 
1 0 T 0.01π +1 -1 0 ±1 
1 1 F 0 0 0 0 0 
1 1 T 0 0 0 0 0 

 
In the Table 6, 𝑋𝑋𝑖𝑖𝑖𝑖 represents the measurement value of the j-th quantum bit in the i-th 

chromosome, and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗  represents the measurement value of the j-th quantum bit in the 
current best chromosome. ∆𝜃𝜃𝑖𝑖𝑖𝑖 is used to control the convergence speed of the QGA. When 
∆𝜃𝜃𝑖𝑖𝑖𝑖 is too small, the convergence speed becomes slow. When ∆𝜃𝜃𝑖𝑖𝑖𝑖 is too large, the results 
could diverge or converge to the a locally optimal solution. Therefore, to search for the 
globally optimal solution, we set the value of ∆𝜃𝜃𝑖𝑖𝑖𝑖 to 0.01π, which is a relatively small value. 
Here, 𝑠𝑠�𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖� is the direction of the rotation angle, which is important to the convergence 
of the algorithm.  

The theory that the proposed strategy can make the population converge to the optimal 
solutions is stated as follows. When 𝑋𝑋𝑖𝑖𝑖𝑖 = 0, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗 = 1, and 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖) > 𝑝𝑝𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), to make the 
current solution converge to a chromosome with higher fitness, the value of �𝛼𝛼𝑖𝑖𝑖𝑖�

2 should be 
made larger. Therefore, if 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 > 0, then 𝜃𝜃 rotates 0.01π clockwise. If 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 < 0, then 𝜃𝜃 
rotates 0.01π anticlockwise, as in the schematic diagram of the rotation gate in Fig. 2. Other 
situations are similar. It can be seen that the quantum rotation gate is guided by the current 
optimal solution, and thus, it has a greater chance to converge to the optimal solutions.  
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Fig. 2. Schematic diagram of the rotation gate 

 
To further increase the diversity of the population, a mutation can be introduced as well. 

It can be seen as a quantum bit rotating 0.5π anticlockwise. This mutation process is identified 
by the users according to their preference.  

 

3.4 A pruning strategy for the redundant itemsets 
Because the updating process could produce some meaningless and redundant itemsets, a 
pruning strategy for such itemsets is designed in this section. It can be divided into three steps.  

(1) Discovering all of the maximum mutually exclusive subsets in the studied 
transactions.  

For the example in Table 1, we initialize the first maximum mutually exclusive subset by 
𝑇𝑇1, which is denoted as 𝑆𝑆1 = {𝐴𝐴,𝐶𝐶,𝐷𝐷}. When processing 𝑇𝑇2, it can be seen that 𝑇𝑇2 ⊆ 𝑆𝑆1, and 
thus, the maximum mutually exclusive subset 𝑆𝑆1 remains unchanged. For 𝑇𝑇3, the maximum 
mutually exclusive subset 𝑆𝑆1 is updated as 𝑆𝑆1 = {𝐴𝐴,𝐶𝐶,𝐷𝐷,𝐸𝐸} since 𝑆𝑆1 ⊆ 𝑇𝑇3. In contrast to 𝑇𝑇2 
and 𝑇𝑇3, 𝑇𝑇4 ⊈ 𝑆𝑆1 and 𝑆𝑆1 ⊈ 𝑇𝑇4, and thus, the second maximum mutually exclusive subset 𝑆𝑆2 is 
generated as 𝑆𝑆2 = {𝐵𝐵,𝐶𝐶,𝐷𝐷}. After handling the remaining transactions similar to the upper 
process, we can finally obtain that all of the maximum mutually exclusive subsets for the 
example in Table 1 are 𝑆𝑆1 = {𝐴𝐴,𝐶𝐶,𝐷𝐷,𝐸𝐸},𝑆𝑆2 = {𝐵𝐵,𝐶𝐶,𝐷𝐷},𝑆𝑆3 = {𝐶𝐶,𝐹𝐹},𝑆𝑆4 = {𝐴𝐴,𝐹𝐹}.  

(2) Calculate the measured value of all of the chromosomes in the current population by 
the method below.  

𝑋𝑋𝑖𝑖 is defined as a measured value of 𝐶𝐶𝑖𝑖 correspondingly, which is represented by a binary 
string whose length is the number of 1-SHPUIs. The measurement process can be described as 
follows: generate a random number in (0,1), and if it is larger than �𝛼𝛼𝑖𝑖𝑖𝑖�

2, 𝑋𝑋𝑖𝑖𝑖𝑖 is set to 1; 
otherwise, it is 0. Then, repeat this calculation for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑛𝑛 times. When the discovered 
1-SHPUIs are sorted in alphabetic ascending order, if 𝑋𝑋𝑖𝑖𝑖𝑖 = 1, then the j-th 1-SHPUI is a 
member of the represented itemset; otherwise, it is not.  

Because the number of 1-SHPUIs in Table 5 is 5, the length of each chromosome is set as 
5. When set 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 as 6, one possible measured value of the population is shown in Fig. 3. 
The itemset that corresponds to 𝑋𝑋1 is {𝐴𝐴𝐴𝐴}; for 𝑋𝑋2, it is {𝐴𝐴𝐴𝐴}, and so on.  

 
 
 
 



3618                    Ju Wang et al.: High Utility Itemset Mining over Uncertain Datasets Based on a Quantum Genetic Algorithm 

 

1 1 0 0

1 0 0 0

0 1 1 0

1 0 1 0

0 1 0 0

A B C D
X1

X2

X3

X4

X5

0

1

1

0

1

E

0 0 1 1X6 1  
Fig. 3. Example of possible measured values 

 
 

(3) If the itemset that corresponds to the measured value 𝑋𝑋𝑖𝑖 is not contained in these 
maximum mutually exclusive subsets, then 𝑋𝑋𝑖𝑖  is deleted from the current population. 
Otherwise, its corresponding measured value remains unchanged in the current population.  
For the possible measured values in Fig. 3, the itemset that corresponds to 𝑋𝑋1 is {𝐴𝐴𝐴𝐴}, and the 
itemset that corresponds to 𝑋𝑋2  is {𝐴𝐴𝐴𝐴} . Because {𝐴𝐴𝐴𝐴}  is not contained in 𝑆𝑆1~𝑆𝑆4 , its 
corresponding measured value 𝑋𝑋1  will be deleted from the current population. However, 
because {𝐴𝐴𝐴𝐴} is contained in 𝑆𝑆1, its corresponding measured value remains unchanged.  

3.5 Fitness evaluation 
The designed algorithm employs the potential utility of itemsets as the fitness function, which 
is denoted by 

𝑝𝑝𝑝𝑝(𝑋𝑋𝑟𝑟) = � 𝑝𝑝𝑝𝑝�𝑋𝑋𝑟𝑟,𝑇𝑇𝑞𝑞�
𝑋𝑋𝑖𝑖⊆𝑇𝑇𝑞𝑞

= � � 𝑝𝑝𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞�        
𝑖𝑖𝑝𝑝⊆𝑋𝑋𝑟𝑟𝑋𝑋𝑟𝑟⊆𝑇𝑇𝑞𝑞

                           (5) 

and 
𝑝𝑝𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� = 𝑖𝑖𝑖𝑖�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� × 𝑝𝑝�𝑖𝑖𝑝𝑝,𝑇𝑇𝑞𝑞� × 𝑝𝑝𝑝𝑝�𝑖𝑖𝑝𝑝�.                                     (6) 

where 𝑋𝑋𝑟𝑟 is the remaining measured value after adopting the pruning strategy. If the 
potential utility value of 𝑋𝑋𝑟𝑟 is no smaller than the minimum utility threshold, it is considered 
to be a nHPUI and will be placed in the set of HPUIs. 

 

3.6 Algorithm description and analysis 
The above phases are then repeatedly processed until the termination condition is reached. 

The algorithm of the designed HPUIM-QGA is shown in Table 7.  
 

Table 7. Description of the HPUIM-QGA algorithm. 

Input: An uncertain dataset D; a profit table eu; the minimum utility 
threshold 𝛿𝛿; and the size of each population M. 

Output: A set of potential high utility itemsets HPUIs 
1 For each 𝑇𝑇𝑞𝑞 ∈ 𝐷𝐷 do 
2 For each 𝑖𝑖𝑗𝑗 ⊆ 𝑇𝑇𝑞𝑞 do 
3 𝑝𝑝𝑝𝑝𝑝𝑝�𝑇𝑇𝑞𝑞�=𝑖𝑖𝑖𝑖�𝑖𝑖𝑗𝑗 ,𝑇𝑇𝑞𝑞� × 𝑝𝑝�𝑖𝑖𝑗𝑗 ,𝑇𝑇𝑞𝑞� × 𝑒𝑒𝑒𝑒�𝑖𝑖𝑗𝑗�; 
4    End for 
5 End for 
6 Calculate 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑖𝑖𝑗𝑗� = ∑ 𝑝𝑝𝑝𝑝𝑝𝑝�𝑇𝑇𝑞𝑞�𝑖𝑖𝑗𝑗⊆𝑇𝑇𝑞𝑞 ; 
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7 𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ 𝑝𝑝𝑝𝑝𝑝𝑝�𝑇𝑇𝑞𝑞�𝑇𝑇𝑞𝑞∈𝐷𝐷 ; 
8 Find 1-SHPUIs ← �𝑖𝑖𝑗𝑗�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑖𝑖𝑗𝑗� ≥ 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝛿𝛿�; 
9 Set 𝑘𝑘 = |1 − SHPUIs|; 

10 Initialize 𝐶𝐶𝑖𝑖 = �
𝛼𝛼𝑖𝑖1 ⋯ 𝛼𝛼𝑖𝑖𝑖𝑖
𝛽𝛽𝑖𝑖1 ⋯ 𝛽𝛽𝑖𝑖𝑖𝑖� = �1 √2⁄ ⋯ 1 √2⁄

1 √2⁄ ⋯ 1 √2⁄
�; 

11 While termination criteria are not reached do 
12 For 𝑖𝑖 ← 1 𝑡𝑡𝑡𝑡 𝑀𝑀 do 
13 Calculate measured value 𝑋𝑋𝑖𝑖 of 𝐶𝐶𝑖𝑖; 
14 Pruning redundant itemsets by the designed strategy; 
15 If 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 0 then 
16       If 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋𝑟𝑟) ≥ 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝛿𝛿 then 
17         𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑋𝑋𝑟𝑟)⋃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
18       End if  
19     End if 
20 End for 
21 Update quantum rotation gate according to the given strategy; 
22 End while 

 
In the designed HPUIM-QGA algorithm, the 1-SHPUIs are first discovered, and their 

number is set to be the length of the chromosomes in the evolutionary process (Lines 1 to 9). 
The chromosomes are encoded as quantum bits, and they are initialized as 1 √2⁄  (Line 10). 
Lines 11 to 22 are the evolutionary process, where the fitness evaluation phase, updating 
process and pruning strategy are executed until the termination criterion is reached. The 
function 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑚𝑚(𝑋𝑋𝑖𝑖) is used to convert chromosome 𝑋𝑋𝑖𝑖 into its corresponding itemsets by 
the method in section 4.3. In the QGA, the termination criterion can usually be set to the 
maximum number of iterations.  

4. Experimental Classification Results and Analysis 
The proposed HPUIM-QGA algorithm considers both the tuple uncertainty and the attribute 
uncertainty. However, PHUI-List and PHUI-UP employ only the tuple uncertainty model, and 
thus, it is impossible to compare the HPUIM-QGA with PHUI-List and PHUI-UP directly. 
The same discussion can be applied to UHUI-Apriori but does not utilize the internal utility in 
the original definitions. Therefore, to prove that the proposed algorithm is acceptable, it is 
compared with HUITWU [10], which is a state-of-the-art algorithm for HUIM, and it can 
derive the complete condensed representation of the HUIs. Furthermore, to prove that the 
proposed algorithm is efficient, the proposed algorithm is also compared with 
HUPEumu-GRAM [11] and HUIM-BPSO [12]. Comparison experiments for these algorithms 
in terms of the runtime, memory consumption, and analysis for the discovered itemsets are 
conducted below.  

All of the algorithms were implemented in Matlab, and the experiments were conducted 
on a personal computer equipped with an Intel Core i5-4590 dual-core processor and 4 GB of 
RAM, running the 32-bit Microsoft Windows 7 operation system. The experimental results are 
presented and discussed thereafter.  
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 4.1 Datasets 
Experiments were performed on the real-life datasets mushroom, connect and accidents, and 
the synthetic dataset T10I4D100K [20,21], which are widely used in the issue of HUIM. 
Parameters and characteristics of these datasets are respectively shown in Tables 8 and 9.  
 
 

Table 8. Parameters of the used datasets. 
⋕ |𝐷𝐷| Total number of transactions 
⋕ |𝐼𝐼| Number of distinct items 
AvgLen Average transaction length 
Type Dataset type: sparse or dense 

 
Table 9. Characteristics of the datasets. 

Dataset ⋕ |𝐷𝐷| ⋕ |𝐼𝐼| AvgLen Type 
T10I4D100K 100000 870 10.1 sparse 
mushroom 8124 119 7.2 dense 
connect 67557 132 43 dense 
accidents 340183 468 33.8 dense 

 
 
Because these datasets do not provide the external utility, internal utility and existence 

probability of each item, a simulation model [8] is employed. The model generates random 
numbers that obey the log-normal distribution in the [1, 5] interval and [1, 1000] interval, 
which correspond to the internal and external utility, respectively. In addition, due to the 
uncertainty property of the items in each transaction, their existence probabilities obey a 
uniform distribution in the [0.5, 1] interval. For HUITWU, HUPEumu-GRAM and 
HUIM-BPSO, precise versions of these datasets are employed since they only can address 
HUIM in precise datasets. 

 

4.2 Runtime 
In this paper, typical parameters are adopted in the compared algorithms. For the 
HUIM-BPSO algorithm, 𝑤𝑤1 is set to 0.9, and the individual factor 𝑐𝑐1 and the social factor 𝑐𝑐2 
are both set to 2, which is employed in the literature [12]. The parameters in the 
HUPEumu-GRAM algorithm originate from the literature [11], using roulette wheel selection, 
one-point crossover, and ranked mutation. The crossover rate is initially set to 0.9 in the 
experiment. For our proposed HPUIM-QGA, we adopt the selection strategy of rotation angle, 
as in section 4.4. When we set the number of iterations and population size to 10000 and 20 
respectively, the runtime of the HPUIM-QGA, HUITWU, HUPEumu-GRAM and 
HUIM-BPSO in different minimum utility thresholds over the stated four datasets are shown 
in Fig. 4. Note that the minimum utility threshold is also used as the minimum potential utility 
threshold that is employed in the proposed HPUIM-QGA.  
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Fig. 4. Runtime under various values of 𝛿𝛿 

 
From Fig. 4, it can be seen that the runtime of the HUPEumu-GRAM, HUIM-BPSO, 
HUITWU, and HPUIM-QGA is in accordance with the order from long to short. 
HUPEumu-GRAM needs a long runtime since it requires us to initialize the chromosomes as 
the HUIs in the evolutionary process, which consumes time to find these initial chromosomes 
from the large number of unpromising and meaningless itemsets. While the quantum 
chromosome can be used to characterize multiple states simultaneously, which implies strong 
parallelism and better ability to maintain the diversity of population, the run time of the 
HPUIM-QGA is shorter than that of HUIM-BPSO, while a pruning strategy is adopted in 
these two algorithms. Evolutionary computation that can find the optimal solutions quickly in 
the dense datasets and the construction of the HUITWU-Tree that is developed in the 
HUITWU consumes time, and thus, the runtime of the HPUIM-QGA is shorter than that of 
HUITWU in the dense datasets such as mushroom, connect and accidents. However, a large 
number of itemsets are not useful in the sparse dataset T10I4D100K, which makes the time 
consumption for the pruning strategy and updating process increase. Therefore, the runtime of 
the HPUIM-QGA is very close to that of HUITWU. Moreover, from Fig. 4, it can be seen that 
the runtime is inversely proportional to the minimum utility threshold 𝛿𝛿  in general. This 
phenomenon arises because the larger the value of 𝛿𝛿 is, the smaller the number of HUIs or 
HPUIs. 
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4.3 Memory consumption 
Using the same parameter settings that are adopted in the section 4.2, the memory 
consumption is evaluated to show the performance of the compared four algorithms. The 
comparison results are shown in Fig. 5. 
 

 
Fig. 5. Memory consumption under various values of 𝛿𝛿 

 
 
From Fig. 5, it can be seen that the memory consumption is also inversely proportional to 

the minimum utility threshold 𝛿𝛿  in general. This result arises because all of these four 
compared algorithms adopt the overestimation of the utility or potential utility, which prunes 
the unpromising itemsets in an early stage by using its downward property. Therefore, the 
larger the value of 𝛿𝛿 is, the smaller the values of 1-SHPUIs or 1-HTWUIs (high transaction 
weighted itemsets). Furthermore, because the number of 1-SHPUIs or 1-HTWUIs is a decided 
factor for the length of chromosome and the scale of HUITWU-Tree, the smaller the numbers 
of 1-SHPUIs or 1-HTWUIs are, the lower the amount of memory consumption. It is easy to 
understand that the memory consumption largely depends on the popsize for the evolutionary 
algorithms. Therefore, compared to HUPEumu-GRAM and HUIM-BPSO, our proposed 
HPUIM-QGA consumes less memory since the redundant itemsets are pruned from the 
current population, which leads to the popsize for the HPUIM-QGA becoming small. As 
HUPEumu-GRAM needs additional calculations to initialize the chromosomes as HUIs, the 
memory consumption of HUIM-BPSO is less than that of HUPEumu-GRAM, while their 
popsize is the same. The experimental results in Fig. 5 show that the memory consumption for 
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the HUITWU-Tree is less than that of HUIM-BPSO. The reason for this result is that only 
pruning or inserting operations are needed to maintain the HUITWU-Tree when the minimum 
utility threshold 𝛿𝛿 changes, while HUIM-BPSO needs an updating operation in every iteration. 
From Fig. 5, it can also be seen that the memory consumption of the HPUIM-QGA is close to 
that of HUITWU in the dense datasets such as mushroom, connect and accidents. However, a 
large number of itemsets are not useful in the sparse dataset T10I4D100K, which makes the 
popsize for the HPUIM-QGA become smaller. Therefore, the memory consumption of the 
HPUIM-QGA is less than that of HUITWU. 

 

4.4 Analysis of the discovered itemsets 
Using the same parameter settings that are adopted in section 5.2, the number of HUIs and 
HPUIs are compared in this section to evaluate whether the proposed algorithm can be 
accepted. To prove that the proposed HPUIM-QGA is reasonable, the precise version of it, 
called the HUIM-QGA, is conducted in this section by setting all of the existence probabilities 
of the items in the uncertain datasets to 1. Fig. 6 shows the number of discovered itemsets by 
the HUPEumu-GRAM, HUIM-BPSO, HUITWU, HUIM-QGA and the proposed 
HPUIM-QGA under various 𝛿𝛿. Moreover, Table 10 evaluates the compression ratio of the 
HPUIs that are generated by the proposed algorithm.  
 

 
Fig. 6. Number of discovered itemsets under various values of 𝛿𝛿 
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From Fig. 6, it can be seen that the number of HUIs discovered by the HUIM-QGA is 
close to that of HUITWU, which can discover the actual and complete HUIs from the precise 
datasets. This result demonstrates that our proposed algorithm has a strong ability to search out 
the HUIs and the mechanism of it is reasonable. In the current parameter settings, the number 
of HUIs discovered by HUIM-BPSO is smaller than that of the HUIM-QGA since the QGA 
has a higher convergence speed than that of BPSO. The experimental results in Fig. 6 show 
that the number of HUIs discovered by HUPEumu-GRAM is much smaller than that of the 
HUIM-BPSO, HUITWU and HUIM-QGA, especially for the sparse dataset T10I4D100K. 
This result arises because HUPEumu-GRAM has no pruning strategy for the redundant 
itemsets, which leads to having a large number of calculations being useless and having the 
discovered itemsets being meaningless. Additionally from Fig. 6, for various 𝛿𝛿 on the four 
datasets, it can be observed that the number of HUIs is larger than that of HPUIs, which are 
discovered by our proposed HPUIM-QGA. This finding arises because the proposed 
algorithm considers both the existence probability and the utility, while HUITWU considers 
only the utility. This result reflects that fewer HPUIs are produced from the numerous 
discovered HUIs when considering the existence probability constraint. Therefore, in real-life 
applications, a large number of HUIs might not be the itemsets needed by the users for making 
efficient decisions because the HUIs with a high existence probability are useful to them, 
similar to HPUIs, especially when the 𝛿𝛿 is set to be low. From Fig. 6, it can also be seen that 
the number of HUIs and HPUIs is inversely proportional to 𝛿𝛿 . The reason is that many 
unpromising candidate itemsets are pruned when the 𝛿𝛿  value is set high, and thus, the 
algorithms can avoid handling them in the mining process.  

Furthermore, the compression ratio of the HPUIs is studied in this paper, and it is defined 
as follows.  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻|

|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻|  

 
Comparison results are shown in Table 10. 
 

Table 10. Analysis of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 under various 𝛿𝛿. 
mushroom 14% 14.25% 14.5% 14.75% 15% 
HUIs 4639 2923 1712 1496 1395 
HPUIs 4016 2322 1156 968 869 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 13.43% 20.56% 32.48% 35.29% 37.71% 
      
connect 28.9% 29.1% 29.3% 29.5% 29.7% 
HUIs 27123 15365 12135 8652 3966 
HPUIs 21569 12545 8965 6852 3126 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 20.48% 18.35% 26.12% 20.80% 21.18% 
      
accidents 13.1% 13.4% 13.7% 14% 14.3% 
HUIs 122536 86598 56897 45235 29856 
HPUIs 98653 76564 42567 35641 21358 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 19.49% 11.59% 25.19% 21.21% 28.46% 
      
T10I4D100K 7% 7.5% 8% 8.5% 9% 
HUIs 49652 29562 15896 10256 4988 
HPUIs 38564 21214 9634 7985 3541 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 22.33% 28.24% 39.39% 22.14% 29.01% 
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From Table 10, it can be seen that the compression ratio achieved by mining HPUIs is 
relatively high. This finding means that many meaningless itemsets are pruned by considering 
both the existence probability and the utility. From Fig. 6 and Table 10, we can conclude that 
the proposed algorithm can discover itemsets that have high utility and high probability over 
uncertain datasets, which demonstrates that the proposed HPUIM-QGA is reasonable and 
acceptable. 

4.5 Convergence 
Because increases in the maximum number of iterations and the popsize can lead to increases 
in the runtime and memory consumption, the proper settings can make the proposed algorithm 
efficient. The experiments in this section are conducted to prove that our proposed algorithm 
can converge to the optimal chromosome quickly and that it is reasonable to set the maximum 
iteration and popsize to 10000 and 20, respectively. Additionally, the precise version of our 
proposed algorithm, which is called the HUIM-QGA and is defined in section 5.4, is used in 
this section since it can reflect the performance of our proposed HPUIM-QGA, and its results 
can be compared to HUPEumu-GRAM, HUIM-BPSO and HUITWU directly.  

First, we set the popsize to 20, and given the minimum utility threshold  𝛿𝛿  (the 
percentages that are presented in the subtitles), the convergence of the HUPEumu-GRAM, 
HUIM-BPSO and HUIM-QGA are evaluated under various iterations through comparing with 
the actual and complete HUIs discovered by HUITWU. The comparison results are shown in 
Fig. 7.  

 
Fig. 7. Convergence under various iterations when popsize=20 
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From Fig. 7, it can be seen that the convergence speed of the HUIM-QGA is quicker than 

that of HUPEumu-GRAM and HUIM-BPSO. For dense datasets, the HUIM-QGA can even 
converge to the number of HUIs that are discovered by HUITWU at the 10000-th iteration. A 
small difference occurred in the sparse dataset T10I4D100K since the number of HUIs is very 
small, but this difference is in the tolerance.  

Second, we set the maximum iteration to 1000, and given the minimum utility threshold 
 𝛿𝛿  (the percentages that are presented in the subtitles), the convergence of the 
HUPEumu-GRAM, HUIM-BPSO and HUIM-QGA are evaluated under various values of 
popsize through comparing the actual and complete HUIs discovered by HUITWU. The 
comparison results are shown in Fig. 8.  

 

 
Fig. 8. Convergence under various popsize when maximum iteration=10000 

 
From Fig. 8, it can also be seen that the convergence speed of the HUIM-QGA is quicker 

than that of HUPEumu-GRAM and HUIM-BPSO, and the HUIM-QGA can converge to the 
number of HUIs discovered by HUITWU when the popsize is set to 20.  

Both these two experiments prove that the proposed algorithm can converge to the 
optimal chromosome quickly. These results also show that the HUIM-QGA achieves good 
convergence when the maximum iteration and popsize are set to 10000 and 20, respectively. 
These two experiments provide a method to determine the settings of the maximum number of 
iterations and the popsize. In other words, through various iterations and popsize, when the 
convergence of the HUIM-QGA satisfies the requirements of the users, the corresponding 
settings can be employed in the subsequent experiments.  
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 5. Conclusions 
In the precise datasets, many algorithms have been proposed to mine HUIs, where most of 
them employ the framework of Apriori and FP-tree. Moreover, HUPEumu-GRAM and 
HUIM-BPSO are the only two algorithms based on evolutionary computation that address the 
problem of HUIM.  

In the uncertain datasets, the itemsets that have a high utility and high existence 
probability are useful to the users, not the itemsets with only one of these properties. To the 
best of our knowledge, Lin et al. proposed PHUI-UP based on a two-phase model and 
PHUI-List based on a list structure, while Lan et al. proposed UHUI-apriori based on Apriori, 
and these are the only algorithms that are used to solve the HUIM problem over uncertain 
datasets. In other words, HUIM over uncertain datasets is a relatively new issue, and new 
algorithms based on evolutionary algorithms are waiting to be developed. 

According to the above research, new definitions of items utility, itemsets utility, 
transaction utility and transaction weighted utility are given. Additionally, an algorithm of 
HUIM over uncertain datasets is proposed based on the QGA in this paper, which treats the 
number of 1-SHPUIs as the size of the chromosomes. It can not only cut down the search 
space by UBPU and the designed pruning strategy but also utilize the QGA’s advantage in 
handling the combinatorial explosion problem. Experiments on real-life and synthetic 
uncertain datasets show that the proposed algorithm has good performance in terms of the 
runtime, memory consumption, analysis for the discovered itemsets and convergence.  

To the best of our knowledge, this paper shows the first algorithm that involves discovering 
HPUIs based on evolutionary computation over uncertain datasets. The QGA-based approach 
requires very few parameters to be set and has advantages in searching capability, 
convergence, computing time, and so on. Thus, these characteristics determine that the 
proposed algorithm can have good performance on HUIM over uncertain datasets. Of course, 
other evolutionary algorithms can be used in this problem also, but it is a non-trivial task since 
some algorithms can only be used to handle the continuous problem and some algorithms 
perform the operations with randomization, which cannot be applied to address this issue 
directly. More work can be performed in applying evolutionary algorithms to HUIM over 
uncertain datasets, and more mechanisms can be studied in the near future. 
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