Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.1.37

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core  

Kim, Young Sun (Department of Electrical and Electronic Engineering, Joongbu University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.1, 2015 , pp. 37-41 More about this Journal
Abstract
The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.
Keywords
Air gap; Current transformer; Ferrite devices; Electromotive force; Finite element method; Nonlinearity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Ghislanzoni and J. A. Carrasco, IEEE Trans. Ind. Electron., 46, 631 (1999). [DOI: http://dx.doi.org/10.1109/41.767072].   DOI   ScienceOn
2 N. Kondrath, and M. K. Kazimierczuk, IEEE Trans. Instrum. Meas., 58, 2008 (2009). [DOI: http://dx.doi.org/10.1109/TIM.2008.2006134].   DOI   ScienceOn
3 A. T. Bui, F. Sixdenier, L. Morel, and N. Burais, IEEE Trans. Mang., 48, 2600 (2012). [DOI: http://dx.doi.org/10.1109/TMAG.2012.2197017].   DOI   ScienceOn
4 E. So and D. Bennett, IEEE Trans. Instrum. Meas., 56, 584 (2007). [DOI: http://dx.doi.org/10.1109/TIM.2007.890802].   DOI   ScienceOn
5 Y. C. Kang, S. H. Ok, S. H. Kang, and P. A. Crossley, IEE Proc. Gener. Transm. Distrib., 151, 27 (2004). [DOI: http://dx.doi.org/10.1049/ip-gtd:20030982].   DOI   ScienceOn
6 H. Yu, J. Yuan, and J. Zou, IEEE Trans. Magn., 42, 1431 (2006). [DOI: http://dx.doi.org/10.1109/TMAG.2006.872478].   DOI   ScienceOn
7 E. Lesniewska and W. Jalmuzny, IET Sci. Meas. Technol., 3, 105 (2009). [DOI: http://dx.doi.org/10.1049/iet-smt:20080005].   DOI   ScienceOn
8 H. Heydari, and F. Faghihi, IEEE Trans. Appl. Supercond., 20, 2276 (2010). [DOI: http://dx.doi.org/10.1109/TASC.2010.2049356].   DOI   ScienceOn
9 Z. Lu, J. S. Smith, and Q. H. Wu, IEEE Trans. Circuits Syst., 55, 3349 (2008). [DOI: http://dx.doi.org/10.1109/TCSI.2008.924112].   DOI   ScienceOn
10 P. N. Miljanic, and J. M. West, IEEE Trans. Instrum. Meas., 40, 410 (1991). [DOI: http://dx.doi.org/10.1109/TIM.1990.1032973].   DOI   ScienceOn
11 http://en.wikipedia.org/wiki/Current_transformer.
12 Elkor Technologies Inc., Introduction to Current Transformers, Appl. Note, 1 (2006).
13 A. Wiszniewski, W. Rebizant, and L. Schiel, IEEE Trans. Power Del., 23, 624 (2008). [DOI: http://dx.doi.org/10.1109/TPWRD.2008.915832].   DOI   ScienceOn
14 M. W. Conroy, et al., IEEE Trans. Power Del., 14, 94 (1999). [DOI: http://dx.doi.org/10.1109/61.736693].   DOI   ScienceOn
15 W. Rebizant, K. Feser, T. Hayder, and L. Schiel, Proc. of 14th Power System Protection Conf. (Bled, Slovenia, 2004). p. 124.