• Title/Summary/Keyword: air fluid analysis

Search Result 898, Processing Time 0.021 seconds

Transient Response Analysis of a Control Valve for CO2 Refrigerant (CO2냉매용 제어밸브의 응답 특성)

  • Kim, Bo Hyun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.11-16
    • /
    • 2018
  • Pilot operated control valve for $CO_2$ refrigerant is a valve that can perform various functions according to the user's intention by replacing pilot units, widely used for flow rate, pressure, and temperature control of refrigeration and air conditioning systems. In addition, $CO_2$ refrigerant, that requires high pressure and low critical temperature, can be installed and used in all positions of the refrigeration system, regardless of high or low pressure. In this paper, response characteristics are modeled and analyzed based on behavior of the main piston of the pilot-operated control valve. Although various factors influence operation of the main piston, this paper analyzes the effect of equilibrium pressure depending on valve installation position and application, and inlet and outlet orifice size of the load pressure feedback chamber to determine feedback characteristics of the main piston. As a result, it was possible to quantitatively analyze the effect of change in equilibrium and load pressure feedback chamber flow path size on the change in main piston dynamic and static characteristics.

Numerical Study on an E-D Nozzle Characteristics with Various Pintle Inflection Angles (핀틀 변곡 각도에 따른 E-D 노즐 특성에 대한 전산수치해석 연구)

  • Park, Sanghyeon;Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.19-27
    • /
    • 2018
  • In this study, a numerical study was conducted to characterize the E-D nozzle which changes according to the nozzle pressure ratios. Three different numerical analysis models were designed by changing the pintle inflection angles. When the nozzle pressure ratio is low, the outside air flows into the E-D nozzle to form an open flow field. As the nozzle pressure ratio increases, the flow transition occurs to become the closed flow field where the recirculation region is isolated inside the nozzle. Also, the highest thrust coefficient was obtained in the analytical model with high pintle inflection angle at all nozzle pressure ratios.

A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement

  • Khaled, Alhaifi;Ahmad Reza, Khorshidvand;Murtadha M., Al-Masoudy;Ehsan, Arshid;Seyed Hossein, Madani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.419-432
    • /
    • 2023
  • This paper studies the effects of porosity distributions on buckling and post-buckling behaviors of a functionally graded saturated porous (FGSP) circular plate. The plate is under the uniformly distributed radial loading and simply supported and clamped boundary conditions. Pores are saturated with compressible fluid (e.g., gases) that cannot escape from the porous solid. Elastic modulus is assumed to vary continuously through the thickness according to three different functions corresponding to three different cases of porosity distributions, including monotonous, symmetric, and asymmetric cases. Governing equations are derived utilizing the classical plate theory and Sanders nonlinear strain-displacement relations, and they are solved numerically via shooting method. Results are verified with the known results in the literature. The obtained results for the monotonous and symmetric cases with the asymmetric case presented in the literature are shown in comparative figures. Effects of the poroelastic material parameters, boundary conditions, and thickness change on the post-buckling behavior of the plate are discussed in details. The results reveal that buckling and post-buckling behaviors of the plate in the monotonous and symmetric cases differ from the asymmetric case, especially in small deflections, that asymmetric distribution of elastic moduli can be the cause.

Regorafenib prevents the development of emphysema in a murine elastase model

  • Kwangseok Oh;Gun-Wu Lee;Han-Byeol Kim;Jin-Hee Park;Eun-Young Shin;Eung-Gook Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.439-444
    • /
    • 2023
  • Emphysema is a chronic obstructive lung disease characterized by inflammation and enlargement of the air spaces. Regorafenib, a potential senomorphic drug, exhibited a therapeutic effect in porcine pancreatic elastase (PPE)-induced emphysema in mice. In the current study we examined the preventive role of regorafenib in development of emphysema. Lung function tests and morphometry showed that oral administration of regorafenib (5 mg/kg/day) for seven days after instillation of PPE resulted in attenuation of emphysema. Mechanistically, regorafenib reduced the recruitment of inflammatory cells, particularly macrophages and neutrophils, in bronchoalveolar lavage fluid. In agreement with these findings, measurements using a cytokine array and ELISA showed that expression of inflammatory mediators including interleukin (IL)-1β, IL-6, and CXCL1/KC, and tissue inhibitor of matrix metalloprotease-1 (TIMP-1), was downregulated. The results of immunohistochemical analysis confirmed that expression of IL-6, CXCL1/KC, and TIMP-1 was reduced in the lung parenchyma. Collectively, the results support the preventive role of regorafenib in development of emphysema in mice and provide mechanistic insights into prevention strategies.

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang;Jungjin Bang;Dong-Wook Jerng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1400-1409
    • /
    • 2023
  • In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

Development and Research of Thermal Management Equipment for Efficiency Enhancement of PEMFC Systems (PEMFC 시스템 효율 향상을 위한 열 관리 설비 개발 및 연구)

  • JAEHWAN KIM;JISEUNG LEE;INSEAK KANG;HYUNCHUL JU
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2024
  • This study introduced a direct contact heat exchanger to enhance the efficiency of polymer electrolyte membrane fuel cells (PEMFCs) systems. According to previous research, 28% of the operating costs of fuel cell systems are attributed to heat exchanger devices, prompting the design of a direct contact heat exchanger to address this issue. Optimal configurations were determined through computational fluid dynamics analysis and experimental device fabrication, and the enhanced heat exchange performance of the heat exchanger was experimentally confirmed. Through this, the contribution of the direct contact heat exchanger to the heat management and efficiency enhancement of PEMFC systems was established.

A Study on Installed Performance Analysis Modelling for a Helicopter Propulsion System Considering Intake Loss (흡입구 손실을 고려한 헬리콥터 추진시스템의 장착성능 해석 모델에 관한 연구)

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ki, Ja-Young;Cha, Bong-Jun;Yu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.263-267
    • /
    • 2008
  • In this work the realistic install performance analysis of a helicopter was performed together with power extraction enabling to operate auxiliary system as well as intake pressure loss, loss due to bleed air, etc. which must be considered in practical propulsion system's performance modelling to be installed to the airframe. The pressure loss occurring in intake was estimated from the intake performance map with relationships of Mach Number and pressure loss. In order to evaluate the proposed installed performance model, the experimental data for comparison must be needed when mounted in propulsion system. However because of lack of accessibility to such real data at the moment, the alternative way was made through comparison that the analysis results by the proposed model were compared with a wellknown commercial program GASTURB's analysis results. The validity of the proposed installed performance model was consequently confirmed because its average deferences from the GASTURB's results were within 0.5%.

  • PDF

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

A Study on Installed Performance Analysis Modelling for a Helicopter Propulsion System Considering Intake Loss (흡입구 손실을 고려한 헬리콥터 추진시스템의 장착성능 해석 모델에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young;Jun, Yong-Min;Ahn, Lee-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • In this work the realistic install performance analysis of a helicopter was performed together with power extraction enabling to operate auxiliary system as well as intake pressure loss, loss due to bleed air, etc. which must be considered in practical propulsion system's performance modelling to be installed to the airframe. The pressure loss occurring in intake was estimated from the intake performance map with relationships of Mach Number and pressure loss. In order to evaluate the proposed installed performance model, the experimental data for comparison must be needed when mounted in propulsion system. However because of lack of accessibility to such real data at the moment, the alternative way was made through comparison that the analysis results by the proposed model were compared with a wellknown commercial program GASTURB's analysis results. The validity of the proposed installed performance model was consequently confirmed because its average deferences from the GASTURB's results were within 0.5%.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.