DOI QR코드

DOI QR Code

A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement

  • Khaled, Alhaifi (Department of Automotive and Marine Engineering, College of Technological Studies-PAAET) ;
  • Ahmad Reza, Khorshidvand (Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University) ;
  • Murtadha M., Al-Masoudy (Air Conditioning and Refrigeration Technique Engineering Department, Al-Mustaqbal University College) ;
  • Ehsan, Arshid (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Seyed Hossein, Madani (Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University)
  • Received : 2022.10.16
  • Accepted : 2023.01.13
  • Published : 2023.02.10

Abstract

This paper studies the effects of porosity distributions on buckling and post-buckling behaviors of a functionally graded saturated porous (FGSP) circular plate. The plate is under the uniformly distributed radial loading and simply supported and clamped boundary conditions. Pores are saturated with compressible fluid (e.g., gases) that cannot escape from the porous solid. Elastic modulus is assumed to vary continuously through the thickness according to three different functions corresponding to three different cases of porosity distributions, including monotonous, symmetric, and asymmetric cases. Governing equations are derived utilizing the classical plate theory and Sanders nonlinear strain-displacement relations, and they are solved numerically via shooting method. Results are verified with the known results in the literature. The obtained results for the monotonous and symmetric cases with the asymmetric case presented in the literature are shown in comparative figures. Effects of the poroelastic material parameters, boundary conditions, and thickness change on the post-buckling behavior of the plate are discussed in details. The results reveal that buckling and post-buckling behaviors of the plate in the monotonous and symmetric cases differ from the asymmetric case, especially in small deflections, that asymmetric distribution of elastic moduli can be the cause.

Keywords

Acknowledgement

The third author extend his appreciation to the Al-Mustaqbal University college for supporting this work under Grant Number MUC-E-0122.

References

  1. Alhaifi, K., Arshid, E. and Khorshidvand, A.R. (2021), "Large deflection analysis of functionally graded saturated porous rectangular plates on nonlinear elastic foundation via GDQM", Steel Compos. Struct., 39(6), 809. https://doi.org/10.12989/scs.2021.39.6.795.
  2. Alibeigloo, A. and Emtehani, A. (2015), "Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method", Meccanica, 50(1), 61-76. https://doi.org/10.1007/s11012-014-0050-7.
  3. Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019), "Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads", Smart Struct. Syst., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429.
  4. Amir, S., Arshid, E. and Khoddami Maraghi, Z. (2020), "Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581.
  5. Arani, A.G., Maraghi, Z.K. and Ferasatmanesh, M. (2017), "Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load", Struct. Eng. Mech., 63(1), 65-76. https://doi.org/10.12989/sem.2017.63.1.065.
  6. Arshid, E., Amir, S. and Loghman, A. (2020a), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  7. Arshid, E., Amir, S. and Loghman, A. (2020b), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 23(8), 3836-3877. https://doi.org/10.1177/1099636220955027.
  8. Arshid, E., Amir, S. and Loghman, A. (2021), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates", Aerosp. Sci. Technol., 111, 106561. https://doi.org/10.1016/j.ast.2021.106561.
  9. Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. (2021), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Arch. Civil Mech. Eng., 21(1), 6. https://doi.org/10.1007/s43452-020-00150-x.
  10. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
  11. Arshid, E., Soleimani-Javid, Z., Amir, S. and Duc, N.D. (2022), "Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers", Aerosp. Sci. Technol., 126, 107573. https://doi.org/10.1016/j.ast.2022.107573.
  12. Banhart, J. (2001), "Manufacture, characterisation and application of cellular metals and metal foams", Progr. Mater. Sci., 46(6), 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5.
  13. Bemani Khouzestani, L. and Khorshidvand, A.R. (2019), "Axisymmetric free vibration and stress analyses of saturated porous annular plates using generalized differential quadrature method", J. Vib. Control, 25(21-22), 2799-2818. https://doi.org/10.1177/1077546319871132.
  14. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  15. Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., Trans., ASME, 31(2), 194-198. https://doi.org/10.1115/1.3629586.
  16. Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill.
  17. Chan, D.Q., Van Hoan, P., Trung, N.T., Hoa, L.K. and Huan, D.T. (2021), "Nonlinear buckling and post-buckling of imperfect FG porous sandwich cylindrical panels subjected to axial loading under various boundary conditions", Acta Mechanica, 232(3), 1163-1179. https://doi.org/10.1007/S00707-020-02882-6.
  18. Chan, D.Q., Van Thanh, N., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837.
  19. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  20. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  21. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  22. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  23. Cong, P.H. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments", Thin Wall. Struct., 163, 107748. https://doi.org/10.1016/j.tws.2021.107748.
  24. Dai, H.L., Dai, T. and Yang, L. (2013), "Free vibration of a FGPM circular plate placed in a uniform magnetic field", Meccanica, 48(10), 2339-2347. https://doi.org/10.1007/S11012-013-9752-5.
  25. Detournay, E. and Cheng, A.H.D. (1993), Fundamentals of Poroelasticity, Vol. II of Comprehensive Rock Engineering: Principles, Practice & Projects, Chapter 5, 113-171, Pergamon Press.
  26. Dinh Duc, N. and Hong Cong, P. (2014), "Nonlinear postbuckling of an eccentrically stiffened thin FGM plate resting on elastic foundations in thermal environments", Thin Wall. Struct., 75, 103-112. https://doi.org/10.1016/j.tws.2013.10.015.
  27. Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
  28. Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press.
  29. Duc, N.D., Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018), "Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads", J. Appl. Comput. Mech., 4(4), 245-259. https://doi.org/10.22055/jacm.2018.23219.1151.
  30. Duc, N.D., Seung-Eock, K., Khoa, N.D. and Chan, D.Q. (2021), "Nonlinear buckling and post-buckling analysis of shear deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a functionally graded porous core", J. Sandw. Struct. Mater., 23(7), 2700-2735. https://doi.org/10.1177/1099636220906821.
  31. Ebrahimi, F., Jafari, A. and Mahesh, V. (2019), "Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates", Struct. Eng. Mech., 72(1), 875-891. https://doi.org/10.12989/sem.2019.72.1.113.
  32. Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
  33. Einafshar, N., Lezgy-Nazargah, M. and Beheshti-Aval, S.B. (2021), "Buckling, post-buckling and geometrically nonlinear analysis of thin-walled beams using a hypothetical layered composite cross-sectional model", Acta Mechanica, 232(7), 2733-2750. https://doi.org/10.1007/S00707-021-02936-3.
  34. Fallah, F., Vahidipoor, M.K. and Nosier, A. (2015), "Post-buckling behavior of functionally graded circular plates under asymmetric transverse and in-plane loadings", Compos. Struct., 125, 477-488. http://doi.org/10.1016/j.compstruct.2015.02.018.
  35. Fang, W., Yu, T., Van Lich, L. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
  36. Feyzi, M.R. and Khorshidvand, A.R. (2017), "Axisymmetric post-buckling behavior of saturated porous circular plates", Thin Wall. Struct., 112, 149-158. https://doi.org/10.1016/J.TWS.2016.11.026.
  37. Gao, Z., Li, H., Zhao, J., Guan, J. and Wang, Q. (2021), "Analyses of dynamic characteristics of functionally graded porous (FGP) sandwich plates with viscoelastic materials-filled square-celled core", Eng. Struct., 248, 113242. https://doi.org/10.1016/j.engstruct.2021.113242.
  38. Gupta, A.K. and Kumar, L. (2007), "Thermal effect on vibration of non-homogenous visco-elastic rectangular plate of linearly varying thickness", Meccanica, 43(1), 47-54. https://doi.org/10.1007/S11012-007-9093-3.
  39. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  40. Heydari, A., Jalali, A. and Nemati, A. (2016), "Buckling analysis of circular functionally graded plate under uniform radial compression including shear deformation with linear and quadratic thickness variation on the Pasternak elastic foundation", Appl. Math. Model., 41, 494-507. https://doi.org/10.1016/j.apm.2016.09.012.
  41. Jabbari, M., Farzaneh Joubaneh, E. and Mojahedin, A. (2014), "Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory", Int. J. Mech. Sci., 83, 57-64. https://doi.org/10.1016/j.ijmecsci.2014.03.024.
  42. Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.
  43. Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031.
  44. Jabbari, M., Mojahedin, A. and Joubaneh, E.F. (2015), "Thermal buckling analysis of circular plates made of piezoelectric and saturated porous functionally graded material layers", J. Eng. Mech., 141(4), 04014148. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000872.
  45. Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2014), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000663.
  46. Jasion, P., Magnucka-Blandzi, E., Szyc, W. and Magnucki, K. (2012), "Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core", Thin Wall. Struct., 61, 154-161. http://doi.org/10.1016/j.tws.2012.04.013.
  47. Javaheri, R. and Eslami, M.R. (2002a), "Buckling of functionally graded plates under in-plane compressive loading", ZAMM- J. Appl. Math. Mech./Zeitschrift Fur Angewandte Mathematik Und Mechanik, 82(4), 277-283. https://doi.org/10.1002/1521-4001(200204)82:4<277::AID-ZAMM277>3.0.CO,2-Y.
  48. Javaheri, R. and Eslami, M.R. (2002b), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626.
  49. Javaheri, R. and Eslami, M.R. (2002c), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
  50. Khorshidvand, A.R., Jabbari, M. and Eslami, M.R. (2012), "Thermoelastic buckling analysis of functionally graded circular plates integrated with piezoelectric layers", J. Therm. Stress., 35(8), 695-717. https://doi.org/10.1080/01495739.2012.688666.
  51. Khorshidvand, A.R., Joubaneh, E.F., Jabbari, M. and Eslami, M.R. (2014), "Buckling analysis of a porous circular plate with piezoelectric sensor-actuator layers under uniform radial compression", Acta Mechanica, 225(1), 179-193. https://doi.org/10.1007/s00707-013-0959-2.
  52. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  53. Lefebvre, L.P., Banhart, J. and Dunand, D.C. (2008), "Porous metals and metallic foams: Current status and recent developments", Adv. Eng. Mater., 10(9), 775-787. https://doi.org/10.1002/adem.200800241.
  54. Li, H., Dong, B., Zhao, J., Zou, Z., Zhao, S., Wang, Q., Han, Q. and Wang, X. (2022), "Nonlinear free vibration of functionally graded fiber-reinforced composite hexagon honeycomb sandwich cylindrical shells", Eng. Struct., 263, 114372. https://doi.org/10.1016/j.engstruct.2022.114372.
  55. Li, H., Gao, Z., Zhao, J., Ma, H., Han, Q. and Liu, J. (2021), "Vibration suppression effect of porous graphene platelet coating on fiber reinforced polymer composite plate with viscoelastic damping boundary conditions resting on viscoelastic foundation", Eng. Struct., 237, 112167. https://doi.org/10.1016/j.engstruct.2021.112167.
  56. Li, H., Liu, D., Li, P., Zhao, J., Han, Q. and Wang, Q. (2021), "A unified vibration modeling and dynamic analysis of FRPFGPGP cylindrical shells under arbitrary boundary conditions", Appl. Math. Model., 97, 69-80. https://doi.org/10.1016/j.apm.2021.03.054.
  57. Li, H., Ren, X., Yu, C., Xiong, J., Wang, X. and Zhao, J. (2021), "Investigation of vibro-acoustic characteristics of FRP plates with porous foam core", Int. J. Mech. Sci., 209, 106697. https://doi.org/10.1016/j.ijmecsci.2021.106697.
  58. Li, S.R., Zhang, J.H. and Zhao, Y.G. (2007), "Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection", Thin Wall. Struct., 45(5), 528-536. http://doi.org/10.1016/j.tws.2007.04.002.
  59. Li, S.R. and Zhou, Y.H. (2001), "Shooting method for non-linear vibration and thermal buckling of heated orthotropic circular plates", J. Sound Vib., 248(2), 379-386. http://doi.org/10.1006/jsvi.2001.3665.
  60. Li, Z., Zhang, Q., Shen, H., Xiao, X., Kuai, H. and Zheng, J. (2023), "Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure", Thin Wall. Struct., 183, 110370. https://doi.org/10.1016/j.tws.2022.110370.
  61. Ma, L.S. and Wang, T.J. (2003a), "Axisymmetric post-buckling of a functionally graded circular plate subjected to uniformly distributed radial compression", Mater. Sci. Forum, 423, 719-724. http://doi.org/10.4028/www.scientific.net/MSF.423-425.719.
  62. Ma, L.S. and Wang, T.J. (2003b), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40(13-14), 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5.
  63. Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
  64. Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theor. Appl. Mech., 47, 421-433.
  65. Magnucka-Blandzi, E. (2011), "Mathematical modelling of a rectangular sandwich plate with a metal foam core", J. Theor. Appl. Mech., 49(2), 439-455.
  66. Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319.
  67. Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
  68. Mashat, D.S., Zenkour, A.M. and Radwan, A.F. (2020), "A quasi-3D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity", Eur. J. Mech., A/Solid., 82, 103985. https://doi.org/10.1016/j.euromechsol.2020.103985.
  69. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019.72.4.513.
  70. Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M. R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
  71. Mojahedin, A., Joubaneh, E.F. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mechanica, 225(12), 3437-3452. https://doi.org/10.1007/s00707-014-1153-x.
  72. Najafizadeh, M.M. and Eslami, M.R. (2002), "Buckling analysis of circular plates of functionally graded materials under uniform radial compression", Int. J. Mech. Sci., 44(12), 2479-2493. http://doi.org/10.1016/S0020-7403(02)00186-8.
  73. Nakajima, H. (2007), "Fabrication, properties and application of porous metals with directional pores", Progr. Mater. Sci., 52(7), 1091-1173. https://doi.org/10.1016/j.pmatsci.2006.09.001.
  74. Panah, M., Khorshidvand, A., Khorsandijou, S. and Jabbari, M. (2021), "Axisymmetric nonlinear behavior of functionally graded saturated poroelastic circular plates under thermomechanical loading", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(8), 4313-4335. https://doi.org/10.1177/09544062211051684.
  75. Panah, M., Khorshidvand, A.R., Khorsandijou, S.M. and Jabbari, M. (2019), "Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates", J. Therm. Stress., 42(9), 1083-1109. https://doi.org/10.1080/01495739.2019.1614502.
  76. Quan, T.Q., Ha, D.T.T. and Duc, N.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
  77. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  78. Reddy, B.S. and Alwar, R.S. (1981), "Post-buckling analysis of orthotropic annular plates", Acta Mechanica, 39(3), 289-296. https://doi.org/10.1007/BF01170351.
  79. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
  80. Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
  81. Rezaei, A.S. and Saidi, A.R. (2017), "On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porous plates", Eur. J. Mech.-A/Solid., 63, 99-109. http://doi.org/10.1016/j.euromechsol.2016.12.006.
  82. Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W. and Arwade, S.R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res., 71, 1-10. http://doi.org/10.1016/j.jcsr.2011.10.028.
  83. Soleimani-Javid, Z., Arshid, E., Amir, S. and Bodaghi, M. (2021), "On the higher-order thermal vibrations of FG saturated porous cylindrical micro-shells integrated with nanocomposite skins in viscoelastic medium", Def. Technol., 18(8), 1416-1434. https://doi.org/10.1016/J.DT.2021.07.007.
  84. Taczala, M., Buczkowski, R. and Kleiber, M. (2015), "Postbuckling analysis of functionally graded plates on an elastic foundation", Compos. Struct., 132, 842-847. https://doi.org/10.1016/j.compstruct.2015.06.055.
  85. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  86. Tahouneh, V., Yas, M.H., Tourang, H. and Kabirian, M. (2012), "Semi-analytical solution for three-dimensional vibration of thick continuous grading fiber reinforced (CGFR) annular plates on Pasternak elastic foundations with arbitrary boundary conditions on their circular edges", Meccanica, 48(6), 1313-1336. https://doi.org/10.1007/S11012-012-9669-4.
  87. Wang, Q., Shi, D. and Shi, X. (2015), "A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation", Meccanica, 51(8), 1985-2017. https://doi.org/10.1007/S11012-015-0345-3.
  88. Xiao, X., Zhang, H., Li, Z. and Chen, F. (2022), "Effect of temperature on the fatigue life assessment of suspension bridge steel deck welds under dynamic vehicle loading", Math. Prob. Eng., 2022, Article ID 7034588. https://doi.org/10.1155/2022/7034588.
  89. Xu, H., He, T., Zhong, N., Zhao, B. and Liu, Z. (2022), "Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy", Tribol. Int., 167, 107362. https://doi.org/10.1016/j.triboint.2021.107362.
  90. Xu, Z., Li, H., Wang, W.Y. and Wen, B. C. (2019), "The analysis of vibration characteristics of fiber metal laminated thin plate with partial constrained layer damping patches treatment", Meccanica, 55(1), 227-243. https://doi.org/10.1007/S11012-019-01104-1.
  91. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
  92. Yuan, Q., Kato, B., Fan, K. and Wang, Y. (2023), "Phased array guided wave propagation in curved plates", Mech. Syst. Signal Pr., 185, 109821. https://doi.org/10.1016/j.ymssp.2022.109821.
  93. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Struct., 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094.
  94. Zhang, Y., Liu, G., Ye, J. and Lin, Y. (2022), "Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness", Compos. Struct., 299, 116087. https://doi.org/10.1016/j.compstruct.2022.116087.
  95. Zhao, J., Hu, J., Wang, T., Li, H., Guan, J., Liu, J. and Gao, Z. (2022), "A unified modeling method for dynamic analysis of GPLs-FGP sandwich shallow shell embedded SMA wires with general boundary conditions under hygrothermal loading", Eng. Struct., 250, 113439. https://doi.org/10.1016/j.engstruct.2021.113439.