• Title/Summary/Keyword: aggregate resources

Search Result 556, Processing Time 0.024 seconds

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit (운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

Study on the utilization of the industrial waste materials and the briquette ash as mixing materials for the concrete Products (콘크리트 製品製造에 産業廢棄物과 연탄재의 利用에 關한 硏究)

  • Kim, Seong-Wan
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.4
    • /
    • pp.99-107
    • /
    • 1979
  • In order to investigate the utilization of industrial waste and briquette ash for concrete production, briquette ash was used as fine aggregate for mortar production and three different kinds mortars were produced by mixing carbide and bottom aches with cement. These products were compared with mortar, produced by standard sand, in the respects of compressive, tensil and bending strengths. Further study on the economic aspect of utilization of briquette ash is needed but the results obtained from our preliminary study are summarized as follows : 1. The compressive strengths at the age of seven days of mortars, made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash and(cement+bottom ash) to briquette ash were 70%, 61% and 58%, respectively, of the mortar made of standard sand. The compressive strengths of those mortars at the age of 28 days were 56%, 49% and 48% of the mortar made standard sand. 2. The compressive strengths at the age of seven days of the mortar made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash and (cement+bottom ash) to briquette ash were 84%, 73%, and 70% of the mortar which was produced according to Korean Standard Value. The compressive strengths of those mortars at the age of 28 days were 85%, 73% and 73% of the mortar of the Korean Standard value. 3. The tensil strengths at the age of seven days of the mortars made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash, and (cement+bottom ash) to briquette ash were 64%, 36%, and 36%, respectively, of the mortar of standard sand. The tensil strengths of those mortars at the age of 28 days were 70%, 47%, and 39%, respectively, of the standard mortar. The mortars made of one to two ratios of cement to briquette ash at the age of seven and 28 days were higher than the mortars of Korean Standard. The other mortars were 61 to 62% at the age of seven days and 75 to 90% at the age of 28 days of the Korean Standard mortar, respectively. 4. The bending strengths at the age of seven days of mortar made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash, and (cement+bottom ash) to briquette ash were 46%, 53% and 50% of the mortar of standard sand. The bending strengths of those mortars at the age of 28 days were 90%, 77% and 69%, respectively of the mortar of standard sand. 5. The mortar of briquette ash which was lower in strengths compared with the mortar of cement have shown possibility of its secondary products of cement and concrete. The uses of briquette ash and industrial waste as construction materials would contribute toward solving various pollution problems caused by industrial wastes and saving labor costs needed to cleaning up. Furthermore, the effective use of briquette ash would greatly save the aggregate resources.

  • PDF

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Limitations on Exclusive Rights of Authors for Library Reprography : A Comparative Examination of the Draft Revision of Korean Copyright Law with the New American Copyright Act of 1976 (저작권법에 준한 도서관봉사에 관한 연구 -미국과 한국의 저자재산권의 제한규정을 중시으로-)

  • 김향신
    • Journal of Korean Library and Information Science Society
    • /
    • v.11
    • /
    • pp.69-99
    • /
    • 1984
  • A dramatic development in the new technology of copying materials has presented us with massive problems on reconciling the conflicts between copyright owners and potential users of copyrighted materials. The adaptation to this changing condition led some countries to revise their copyright laws such as in the U. S. in 1976 and in Korea in 1984 for merging with the international or universal copyright conventions in the future. Copyright defined as exclusive rights given to copyright owners aims to secure a fair return for an author's creative labor and to stimulate artistic creativity for the general public good. The exclusive rights on copyrightable matters, generally for reproduction, preparation of derivative works, public distribution, public performance, and public display, are limited by fair use for scholarship and criticism and by library reproduction for its preservation and interlibrary loan. These limitations on the exclusive rights are concerned with all aspects of library services and cause a great burden on librarian's daily duty to provide balance between the rights of creators and the needs of library patrons. The fair use as one of the limitations on it has been coupled with enormous growth of a new technology and extended from xerography to online database systems. The implementation of the fair use and library reprography in Korean law to the local practices is examined on the basis of the new American copyright act of 1976. Under the draft revision of Korean law, librarians will face many potential problems as summarized below. 1. Because the new provision of 'life time plus 50 years' will tie up substantial bodies of material longer than the old law, until that date librarians would need permissions from the owners and should pay attention to the author's death date. 2. Because the copyright can be sold, distributed, given to the heirs, donated, as a whole or a part, librarians should chase down the heirs and other second owners. In case of a derivative work, this is a real problem. 3. Since a work has its protection from the moment of its creation, the coverage of copyrightable matter would be extended to the published or the unpublished works and librarian's work load would be heavier. Without copyright registration, no one can be certain that a work is in the public domain. Therefore, librarians will need to check with an authority. 4. For implementation of limitations on exclusive rights, fair use and library reproduction for interlibrary loan, there can be no substantial aggregate use and there can be no systematic distribution of multicopies. Therefore, librarians should not substitute reproductions for subscriptions or purchases. 5. For the interlibrary loan by photocopying, librarians should understand the procedure of royalty payment. 6. Compulsory licenses should be understood by librarians. 7. Because the draft revision of Korean law is a reciprocal treaty, librarians should take care of other countries' copyright law to protect foreign authors from Korean law. In order to solve the above problems, some suggestions are presented below. 1. That copyright clearinghouse or central agency as a centralized royalty payment mechanism be established. 2. That the Korean Library Association establish a committee on copyright. 3. That the Korean Library Association propose guidelines for each occasion, e.g. for interlibrary loan, books and periodicals and music, etc. 4. That the Korean government establish a copyright office or an official organization for copyright control other than the copyright committee already organized by the government. 5. That the Korean Library Association establish educational programs on copyright for librarians through seminars or articles written in its magazines. 6. That individual libraries provide librarian's copyright kits. 7. That school libraries distribute subject bibliographies on copyright law to teachers. However, librarians should keep in mind that limitations on exclusive rights are not for an exemption from library reprography but as a convenient access to library resources.

  • PDF

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).