• Title/Summary/Keyword: affinity for glucose

Search Result 77, Processing Time 0.026 seconds

Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction

  • Li, Yi;Jung, Nan-Young;Yoo, Jae Cheal;Kim, Yul;Yi, Gwan-Su
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.458-463
    • /
    • 2018
  • The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with In Cell Interaction Trap method. The candidates were further confirmed and narrowed down to five compounds using the FRET method in a model cell. Among those five compounds, Acebutolol showed notable inhibition of JNK phosphorylation and elevation of glucose uptake in diabetic models of adipocyte and liver cell. Structural computation showed that the binding affinity of Acebutolol on the JNK-JIP1 interaction site was comparable to the known inhibitor, BI-78D3. Our results suggest that Acebutolol, an FDA-approved beta blocker for hypertension therapy, could have a new repurposed effect on type 2 diabetes elevating glucose uptake process by inhibiting JNK-JIP1 interaction.

Method for Cloning Biosynthetic Genes of Secondary Metabolites Including Deoxysugar from Actinomycetes

  • Sohng, Jae-Kyung;Oh, Tae-Jin;Kim, Chun-Gyu
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.475-483
    • /
    • 1998
  • Many antibiotics contain partially deoxygenated sugar components that are usually essential for biological activity, affinity, structural stability, and solubility of antibiotics. Gene probes of the biosynthetic genes related with the deoxysugar were obtained from PCR. Primers were designed from the conserved peptide sequences of the known dTDP-D-glucose 4,6-dehydratases, which are the key step enzymes in the biosynthesis of deoxysugar. The primers were applied to amplify parts of dehydratase genes to 27 actinomycetes that produce the metabolites containing deoxysugar as structural constituents. About 180 and 340 bp DNA fragments from all of the actinomycetes were produced by PCR and analyzed by Southern blot and DNA sequencing. The PCR products were used as gene probes to clone the biosynthetic gene clusters for the antibiotic mithramycin, rubradirin, spectinomycin, and elaiophyrin. This method should allow for detecting of the biosynthetic gene clusters of a vast array of secondary metabolites isolated from actinomycetes because of the widespread existence of deoxysugar constituents in secondary metabolites.

  • PDF

Characterization of Recombinant Drosophila melanogaster Myo-inositol-l-phosphate Synthase Expressed in Escherichia coli

  • Park, Sang-Hee;Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.20-24
    • /
    • 2004
  • Cloned myo-inositol-1-phosphate synthase (INOS) of Drosophila melanogaster was expressed in Escherichia coli, and purified using a His-affinity column. The purified INOS required NAD$\^$+/ for the conversion of glucose-6-phosphate to inositol-1-phosphate. The optimum pH for myo-inositol-1-phosphate synthase is 7.5, and the maximum activity was measured at 40$^{\circ}C$. The molecular weight of the native enzyme, as determined by gel filtration, was approximately M$\_$r/ 271,000${\pm}$15,000. A single subunit of approximately M$\_$r/ 62,000${\pm}$5,000 was detected upon SDS-polyacrylamide gel electrophoresis. The Michaelis ($K_{m}$) and dissociation constants for glucose-6-phosphate were 3.5 and 3.7 mM, whereas for the cofactor NAD$\^$+/ these were 0.42 and 0.4 mM, respectively.

The Uptake of 2-deoxy-D-glucose (2dGlc) by the Endogenous Sugar Transporter(s) of Spodoptera frugiperda Clone 21-AE Cells and the Inhibition of 2dGIc Transport in the Insect Cells by Fructose and Cytoc halasin B

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.177-181
    • /
    • 2003
  • The baculovirus/Spodoptera frugiperda (Sf) cell system has become popular for the production of large amounts of the human erythrocyte glucose transporter, GLUT1, heterologously. However, it was not possible to show that the expressed transporter in insect cells could actually transport glucose. The possible reason for this was that the activity of the endogenous insect glucose transporter was extremely high and so rendered transport activity resulting from the expression of exogenous transporter very difficult to detect. Sf21-AE cells are commonly employed as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains 0.1 % D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike the human glucose transporter, very little is known about properties of the endogenous sugar transporter(s) in insect cells. Thus, the uptake of 2-deoxy-D-glucose (2dGlc) by Sf21-AE cells and the inhibition of 2dGlc transport in the insect cells by fructose and cytochalasin B were investigated in the present work. The binding assay of cytochalasin B was also performed, which could be used as a functional assay for the endogenous glucose transporter(s) in the insect cells. Sf21-AE cells were infected with the recombinant virus AcNPV-GT or no virus, at a multiplicity of infection (MOI) of 5. Infected cells were resuspended in PBS plus and minus 300 mM fructose, and plus and minus 20 $\mu$M cytochalasin B for use in transport assays. Uptake was measured at 28$^{\circ}C$ for 1 min, with final concentration of 1 mM deoxy-D-glucose, 2-[1,2-$^3$H]- or glucose, L-[l,$^3$H]-, used at a specific radioactivity of 4 Ci/mol. The results obtained demonstrated that the sugar uptake in uninfected cells was stereospecific, and was strongly inhibited by fructose but only poorly inhibitable by cytochalasin B. It is therefore suggested that the Sf21-AE glucose transporter has very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Enzyme Sensors Modified with Avidin/Biotin Systembased Protein Multilayers

  • Anzai, Jun-Ichi;Du, Xiao-Yan;Hoshi, Tomonori;Suzuki, Yasuhiro;Takeshita, Hiroki;Osa, Tetsuo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.591-596
    • /
    • 1995
  • Enzyme multilayers composed of avidin and biotin-labeled enzymes were prepared on the surface of electrode, through a strong affinity between avidin and biotin (binding constant: ca $10^{15} M^{-1}$). The enzyme multilayers were useful for the improvement of the performance characteristies of enzyme sensors. The output current of the enzyme sensors depended linearly on the number of enzyme layers deposited. Thus, lactate oxidase (LOx) and alcohol oxidase (AlOx) were deposited after being modified with biotin for constructing enzyme sensors sensitive to L-lactate and ethanol respectively. It was also possible to deposit two different kinds of enzymes successively in a single multilayer. The glucose oxidase (GOx) and ascorbate oxidase (AsOx) were built into a multilayer structure on a Platinum electrode. The GOx, AsOx multilayer-modified electrode was useful for the elimination of ascorbic acid interference of the glucose sensor.

  • PDF

리포솜-아미노산 결합체의 제조와 포도당 민감성에 대한 연구

  • Mun, Je-Yeong;Lee, Gi-Yeong;Kim, Jin-Cheol;Park, Gi-Nam
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.755-758
    • /
    • 2000
  • Glucose sensitive liposomes-amino acid cinjugates Were prepared by DPPC and asparagine derivatives. Liposomes(amino acid added) have higher glucose binding affinity than liposome(amino acid non-added) or distilled water. The liposomes stabilily were increased by adding cholesterol. Liposomes(cholesterol non-added) particles size were bigger than cholesterol added liposomes.

  • PDF

Novel Bombesin Analogues Conjugated with DOTA-Ala(SO3H)-4 aminobenzoic acid and DOTA-Lys(glucose)-4 aminobenzoic acid: Synthesis, Radiolabeling, and Gastrin Releasing Peptide Receptor Binding Affinity

  • Lim, Jae Cheong;Choi, Sang Mu;Cho, Eun Ha;Kim, Jin Joo
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.191-200
    • /
    • 2013
  • In this study, a novel bombesin (BBN) analogues, DOTA-Ala($SO_3H$)-4 aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-$NH_2$ (DOTA-sBBN) and DOTA-Lys(glucose)-4 aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-$NH_2$ (DOTA-gluBBN), were synthesized and radiolabeled, and their binding affinities were evaluated. Peptides were prepared by a solid phase synthesis method and their purities were over 98%. DOTA is the chelating agent for $^{177}Lu$-labeling, and the DOTA-conjugated peptides were radiolabeled with $^{177}Lu$ by a high radiolabeling yield (>98%). The Log P values of DOTA-sBBN and DOTA-gluBBN were -2.20 and -2.79, respectively. 50.41% of $^{177}Lu$-DOTA-sBBN and 72.97% of $^{177}Lu$-DOTA-gluBBN were left undegraded by the serum incubation at $37^{\circ}C$ for 48 hr. A competitive displacement of $^{125}I-[Tyr^4]$-BBN on the PC-3 human prostate carcinoma cells revealed that 50% inhibitory concentration ($IC_{50}$) were 1.46 nM of DOTA-sBBN and 4.67 nM of DOTA-gluBBN indicating a highly nanomolar binding affinity for GRPR. Therefore, it is concluded that $^{177}Lu$-DOTA-sBBN and $^{177}Lu$-DOTA-gluBBN can be potential candidates as a targeting modality for the Gastrin-releasing peptide receptor (GRPR)-over-expressing tumors, and further studies to evaluate their biological and pharmacological characteristics are needed.

Spectro-electrochemical Analyses of Immobilization of Glucose Oxidase (Glucose Oxidase 고정화에 대한 전기화학적/광학적 분석)

  • Kim, Hyun-Cheol;Cho, Young-Jai;Gu, Hal-Bon;SaGon, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.316-319
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymer's backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent, A formative seeds of film growth is delayed by adding the solvent. The delay is induced by radical transfer between the solvent and pyrrole monomer. In the case of adding ethanol, the radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in ppy. However, adding tetrahydrofuran (THF), the radical transfer is more brisk, resulting in short chained polymer. Therefore, the doping level is lowered and then amount of immobilized of enzyme is decreased. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

Chemical Analysis of Acidic Proteo-heteroglycans with Anti-complementary Activity from the Hot-Water Extract of Fomitella fraxinea (장수버섯 자실체로부터 분리한 항보체 활성 단백다당체의 화학적 분석)

  • Yoon, Sang-Hong
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.502-510
    • /
    • 1998
  • The hot-water extract of fruiting bodies in Fomitella fraxinea had potent anti-complementary activities. After fractionation of water-soluble polysaccharides by DEAE-Sephadex A-25 column chromatography, major anti-complementary activity was concentrated into the FF-AP1 among three polysaccharides (FF-NP, FF-AP1, FF-AP2). FF-AP1 was fractionated into $FF-AP1{\alpha}$ and $FF-AP1{\beta}$ obtained from the adsorbed fraction and unadsorbed fraction by affinity chromatography using a ConA-sepharose 4B column, respectively. $FF-AP1{\beta}$, which exihibited the highest anti-complementary activities had an IR absorption peak of $890cm^{-1}$, and a M.W. of about 15,000 (gel filtration). Anti-complementary activity of FF-AP1 decreased greatly by pronase treatment and periodate oxidation. $FF-AP1{\beta}$ responsible for potent anti-complemenary activities of Fomitella fraxinea was an acidic protein-containing heteroglycan consisted of 48% glucose, 13% mannose, and 12% galactose as major component sugars, 9.6% protein, 6% uronic acids.

  • PDF

Comparison of Azo-dye Removal Based on the Enzymatic Differences in T. versicolor and P. chrysosporium (T. versicolor와 P. chrysosporium의 효소발현 특성에 따른 Azo계 염료(Orange II) 제거 특성 비교)

  • Kim, Hak-Yoon;Oh, Je-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.712-718
    • /
    • 2005
  • Stepwise reductions of glucose and Orange II concentration were observed from the experiment of both white-rot fungi such as T. versicolor and P. chrysosporium. As a result, typical removal patterns in those dual substrate system were categorized through several distinctive steps: initial lag period, primary and secondary carbon consumption periods. Also, based on the total removal amounts of Orange II, COD and Color during the experimental period, similar removal extent were observed from both species experiments, within the maximal error range of 5%. However, it was refereed that the internal steps of Orange II removal on enzymatic level should be different between two species: Enzyme Lac showed good affinity for Orange II removal in T. versicolor, however in P. chrysosporium enzyme LiP represented more close affinity to the similar experimental condition. Thus, even though the superficial removal amount of calcitrant Orange II at different fungal species was merely similar, removal pathway of enzymatic levels and intermediates produced during the fungal decomposition would be different.