• Title/Summary/Keyword: affinity binding

Search Result 788, Processing Time 0.026 seconds

Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Jin, Bonghwan;Jnawali, Hum Nath;Jun, Bong-Hyun;Lee, Jee-Young;Heo, Yong-Seok;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.594-599
    • /
    • 2013
  • The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-${\alpha}$, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signal-regulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, $8.79{\times}10^5M^{-1}$. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK.

Flavonoids as Substrates of Bacillus halodurans O-Methyltransferase

  • Jeong, Ki-Woong;Lee, Jee-Young;Kang, Dong-Il;Lee, Ju-Un;Hwang, Yong-Sic;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1311-1314
    • /
    • 2008
  • Bacillus halodurans O-methyltransferase (BhOMT) is an S-adenosylmethionine dependent methyltransferase. In our previous study, three dimensional structure of the BhOMT has been determined by comparative homology modeling and automated docking study showed that two hydroxyl groups at 3'- and 4'-position in Bring and structural rigidity of C-ring resulting from the double bond characters between C2 and C3 of flavonoid, were key factors for interaction with BhOMT. In the present study, BhOMT was cloned and expressed. Binding assay was performed on purified BhOMT using fluorescence experiments and binding affinity of luteolin, quercetin, fisetin, and myricetin were measured in the range of $10^7$. Fluorescence quenching experiments indicated that divalent cation plays a critical role on the metal-mediated electrostatic interactions between flavonoid and substrate binding site of BhOMT. Fluorescence study confirmed successfully the data obtained from the docking study and these results imply that hydroxyl group at 7-position of luteolin, quercetin, fisetin, and myricetin forms a stable hydrogen bonding with K211 and carboxyl oxygen of C-ring forms a stable hydrogen bonding with R170. Hydroxyl group at 3'-and 4'-position in the B-ring also has strong $Ca^{2+}$ mediated electrostatic interactions with BhOMT.

GABA Receptor Imaging (GABA 수용체 영상)

  • Lee, Jong-Doo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.166-171
    • /
    • 2007
  • GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, $GABA_{A}-receptor$ that allows chloride to pass through a ligand gated ion channel and $GABA_{B}-receptor$ that uses G-proteins for signaling. The $GABA_{A}$-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate $GABA_{A}$-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with $^{11}C-FMZ$, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, $^{18}F-fluoroflumazenil$ (FFMZ) has been developed to overcome $^{11}C's$ short half-life. $^{18}F-FFMZ$ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using $^{11}C-FMZ$ PET instead of $^{18}F-FDG$ PET, restrict the foci better and may also help find lesions better than high resolution MR. $GABA_{A}$ receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, $GAB_{A}$ imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors

  • Kim, Tae-Ho;Custodio, Raly James;Cheong, Jae Hoon;Kim, Hee Jin;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.584-590
    • /
    • 2019
  • Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer's disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptorbenzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with $IC_{50}$ of 1.19, $0.84{\mu}g/kg$, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.

Molecular insights into the role of genetic determinants of congenital hypothyroidism

  • Kollati, Yedukondalu;Akella, Radha Rama Devi;Naushad, Shaik Mohammad;Patel, Rajesh K.;Reddy, G. Bhanuprakash;Dirisala, Vijaya R.
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.29.1-29.10
    • /
    • 2021
  • In our previous studies, we have demonstrated the association of certain variants of the thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (TG) genes with congenital hypothyroidism. Herein, we explored the mechanistic basis for this association using different in silico tools. The mRNA 3'-untranslated region (3'-UTR) plays key roles in gene expression at the post-transcriptional level. In TSHR variants (rs2268477, rs7144481, and rs17630128), the binding affinity of microRNAs (miRs) (hsa-miR-154-5p, hsa-miR-376a-2-5p, hsa-miR-3935, hsa-miR-4280, and hsa-miR-6858-3p) to the 3'-UTR is disrupted, affecting post-transcriptional gene regulation. TPO and TG are the two key proteins necessary for the biosynthesis of thyroid hormones in the presence of iodide and H2O2. Reduced stability of these proteins leads to aberrant biosynthesis of thyroid hormones. Compared to the wild-type TPO protein, the p.S398T variant was found to exhibit less stability and significant rearrangements of intra-atomic bonds affecting the stoichiometry and substrate binding (binding energies, ΔG of wild-type vs. mutant: -15 vs. -13.8 kcal/mol; and dissociation constant, Kd of wild-type vs. mutant: 7.2E-12 vs. 7.0E-11 M). The missense mutations p.G653D and p.R1999W on the TG protein showed altered ΔG(0.24 kcal/mol and 0.79 kcal/mol, respectively). In conclusion, an in silico analysis of TSHR genetic variants in the 3'-UTR showed that they alter the binding affinities of different miRs. The TPO protein structure and mutant protein complex (p.S398T) are less stable, with potentially deleterious effects. A structural and energy analysis showed that TG mutations (p.G653D and p.R1999W) reduce the stability of the TG protein and affect its structure-functional relationship.

Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2

  • Na, Eun-Jee;Lee, Sook-Young;Kim, Hak Jun;Oem, Jae-Ku
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.12.1-12.11
    • /
    • 2021
  • Background: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

Construction and Production of Concatameric Human TNF Receptor-Immunoglobulin Fusion Proteins

  • Yim, Su-Bin;Chung, Yong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 2004
  • Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and lymphotoxin-$\alpha$ (LT-$\alpha$, TNF-$\beta$) can initiate and perpetuate human diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and insulin-dependent diabetes mellitus (IDDM). TNFs can be blocked by the use of soluble TNF receptors. However, since monomeric soluble receptors generally exhibit low affinity or function as agonists, the use of monomeric soluble receptors has been limited in the case of cytokines such as TNF-$\alpha$, TNF-$\alpha$, interleukin (IL)-1, IL-4, IL-6, and IL-13, which have adapted to a multi component receptor system. For these reasons, very high-affinity inhibitors were created for the purpose of a TNFs antagonist to bind the TNFR and trigger cellular signal by using the multistep polymerase chain reaction method. First, recombinant simple TNFR-Ig fusion proteins were constructed from the cDNA sequences encoding the extracellular domain of the human p55 TNFR (CD120a) and the human p75 TNFR (CD120b), which were linked to hinge and constant regions of human $IgG_1$ heavy chain, respectively using complementary primers (CP) encoding the complementary sequences. Then, concatameric TNFR-Ig fusion proteins were constructed using recombinant PCR and a complementary primer base of recombinant simple TNFR-Ig fusion proteins. For high level expression of recombinant fusion proteins, Chinese hamster ovary (CHO) cells were used with a retroviral expression system. The transfected cells produced the simple concatameric TNFR-Ig fusion proteins capable of binding TNF and inactivating it. These soluble versions of simple concantameric TNFR-Ig fusion proteins gave rise to multiple forms such as simple dimers and concatameric homodimers. Simple TNFR-1g fusion proteins were shown to have much more reduced TNF inhibitory activity than concatameric TNFR-Ig fusion proteins. Concatameric TNFR-Ig fusion proteins showed higher affinity than simple TNFR-Ig fusion proteins in a receptor inhibitor binding assay (RIBA). Additionally, concatameric TNFR-Ig fusion proteins were shown to have a progressive effect as a TNF inhibitor compared to the simple TNFR-Ig fusion proteins and conventional TNFR-Fc in cytotoxicity assays, and showed the same results for collagen induced arthritis (CIA) in mice in vivo.

Pharmacological Characterization of Synthetic Tetrahydroisoquinoline Alkaloids, YS 51 and YS 55, on the Cardiovascular System

  • Chang, Ki-Churl;Kang, Young-Jin;Lee, Young-Soo;Chong, Won-Seog;Choi-Yun, Hey-Sook;Lee, Duck-Hyong;Ryu, Jae-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.461-469
    • /
    • 1998
  • Tetrahydroisoquinoline (THI) alkaloids can be considered as cyclized derivatives of simple phenylethy-lamines, and many of them, especially with 6,7-disubstitution, demonstrate relatively high affinity for catecholamines. Two -OH groups at 6 and 7 positions are supposed to be essential to exert ?${\beta}-receptor$ activities. However, it is not clear whether -OH at 6,7 substitution of THIs also shows ?${\alpha}-adrenoceptor$ activities. In the present study, we investigated whether -OH or $-OCH_3$ substitutions of 6,7 position of THIs differently affect the ?1-adrenoceptor affinity. We synthesized two 1-naphthylmethyl THI alkaloids, $1-{\beta}-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline$ HBr (YS 51) and $1-{\beta}-naphthylmethyl-6, 7-dimethoxy-1,2,3,4-tetrahydroisoquinoline$ HCl (YS 55), and their pharmacological actions on ?${\alpha}_1-adrenoceptor$ were compared. YS 51 and YS 55, concentration-dependently relaxed endothelium-denuded rat thoracic aorta precontracted with phenylephrine (PE, 0.1 ${\mu}M$) in which $pEC_{50}$ were $5.89{\pm}0.21$ and $5.93{\pm}0.19$, respectively. Propranolol (30 nM) did not affect the relaxation-response curves to YS 51 and YS 55. Concentration-response curves to PE were shifted to right by the pretreatment with YS 51 or YS 55. The $pA_2$ values of YS 51 and YS 55 showed $6.05{\pm}0.24$ and $5.88{\pm}0.16$, respectively. Both probes relaxed KCl (65.4 mM)-contracted aorta and inhibited $CaCl_2-induced$ contraction of PE-stimulated endothelium- denuded rat thoracic aorta in $Ca^{2+}-free$ solutions. In isolated guinea pig papillary muscle, 1 and 10 ${\mu}M$ YS 51 increased contractile force about 4- and 8- fold over the control, respectively, along with the concentration-dependent increment of cytosolic $Ca^{2+}$ ions. While, 10 ${\mu}M$ YS 55 reduced the contractile force about 50 % over the control and lowered the cytosolic $Ca^{2+}$ level, in rat brain homogenates, YS 51 and YS 55 displaced $[^3H]prazosin$ binding competitively with Ki 0.15 and 0.12 ${\mu}M$, respectively. However, both probes were ineffective on $[^3H]nitrendipine$ binding. Therefore, it is concluded that two synthetic naphthylmethyl-THI alkaloids have considerable affinity to ?1-adrenenoceptors in rat aorta and brain.

  • PDF

THE AFFINITY OF CALMODULIN-AFFIGEL FOR INOSITOL TRIPHOSPHATE KINASE FROM BOVINE BRAIN (소의 뇌 Inositol triphosphate kinase와 Calmodulin-Affigel과의 친화도)

  • Lim, Sung-Woo;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1990
  • The one event on signalling mechanism is the cleavage by adenyl cyclase of ATP into second messenger, cyclic AMP. The other transfer system of inositol metabolism. it is widely recognized that hydrolysis of the minor membrane lipid phosphoinositide bisphosphate($PIP_2$) initiated by occupation of certain receptors and catalyzed by phospholipase C, lead to toe generation of the two intracellular messengers, inositol triphosphate($IP_3$) and diacylglycerol(DG). $IP_3$ is converted to inositol tetrakisphosphate($IP_4$) by $IP_3$ kinase. In the present study, it is that purification of calmodulin is used by phenyl-Sepharose CL-4B chromatography. it's molecular weigh, 17.000 in SDS-polyacrylamide gel electrophoresis. In order to observe the affinity between calmodulin (CaM)-Affigel 15 and $IP_3$ kinase, and isolated $IP_3$ kinase, was applied in CaM-Affigel with $Ca^{2+}$ equilibirum buffer and EGTA equilibirum buffer. We compared with binding and elution effect of $IP_3$ kinase in several condition of buffer. In affinity of binding. $Ca^{2+}$ equilibrium buffer was in the most proper condition. and elution, CaM/$Ca^{2+}$ buffer(CE1 10.36, CE2 12. 76pM/min/mg of protein) was effected much more than EGTA buffer(E2 1.48, E3 2.43pM/min/mg of protein), but CaM/$Ca^{2+}$ stimulate the activity of $IP_3$ kinase. And then, several detergents such as sodium deoxycholate, tween 20. cholic acid, polyethylene glycol, chaps were applied. The 0.2% chaps buffer(E2 23.19, E3 8.05pM/min/mg of protein) was the most effective in elution of $IP_3$ kinase.

  • PDF