Browse > Article
http://dx.doi.org/10.1016/j.jgr.2019.02.005

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase  

Chen, Feiyan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Zhu, Kexuan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Chen, Lin (Department of Physiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Ouyang, Liufeng (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Chen, Cuihua (Research Center, Basic Medical College, Nanjing University of Chinese Medicine)
Gu, Ling (Research Center, Basic Medical College, Nanjing University of Chinese Medicine)
Jiang, Yucui (Research Center, Basic Medical College, Nanjing University of Chinese Medicine)
Wang, Zhongli (School of Nursing, Jiujiang University)
Lin, Zixuan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Zhang, Qiang (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Shao, Xiao (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Dai, Jianguo (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Zhao, Yunan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
Publication Information
Journal of Ginseng Research / v.44, no.3, 2020 , pp. 461-474 More about this Journal
Abstract
Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.
Keywords
Affinity chromatography; Creatine kinase; Fatigue; Ginseng; 20(S)-protopanaxadiol;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Clarkson PM, Sayers SP. Etiology of exercise-induced muscle damage. Can J Appl Physiol 1999;24:234-48.   DOI
2 Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact 2014;14:68-77.
3 Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med 2010;48:757-67.   DOI
4 Zhao YN, Zhang Q, Shao X, Ouyang LF, Wang X, Zhu KX, Chen L. Decreased glycogen content might contribute to chronic stress induced atrophy of hippocampal astrocyte volume and depression like behavior in rats. Sci Rep 2017;7:43192.   DOI
5 Xu L, Wang CY, Lv L, Liu KX, Sun HJ, Han GZ. Pharmacokinetics of phosphocreatine and its active metabolite creatine in the mouse plasma and myocardium. Pharmacol Rep 2014;66:908-14.   DOI
6 Di Pierro D, Tavazzi B, Perno CF, Bartolini M, Balestra E, Calio R, Giardina B, Lazzarino G. An ion-pairing high-performance liquid chromatographic method for the direct simultaneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides, and bases in perchloric acid cell extracts. Anal Biochem 1995;231:407-12.   DOI
7 Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011;40:1271-96.   DOI
8 Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, Wei J, Li P, Heidecker B, Ma W, et al. Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb Chem High Throughput Screen 2009;12:791-800.   DOI
9 Callies O, Hernandez Daranas A. Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat Prod Rep 2016;33:881-904.   DOI
10 Lahiri SD, Wang PF, Babbitt PC, McLeish MJ, Kenyon GL, Allen KN. The 2.1 A structure of Torpedo californica creatine kinase complexed with the ADP-$Mg^{2+}$-$NO^{3-}$-creatine transition-state analogue complex. Biochemistry 2002;41:13861-7.   DOI
11 Sahlin K, Harris RC. The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 2011;40:1363-7.   DOI
12 Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Intergr Comp Physiol 2004;287:R502-16.   DOI
13 Hall MM, Rajasekaran S, Thomsen TW, Peterson AR. Lactate: friend or foe. PM R 2016;8:S8-15.   DOI
14 Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodriguez E, Donapetry-Garcia C, Vila-Altesor M, Rodriguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014;17:76-100.   DOI
15 McFedries A, Schwaid A, Saghatelian A. Methods for the elucidation of protein-small molecule interactions. Chem Biol 2013;20:667-73.   DOI
16 Ong SE, Li X, Schenone M, Schreiber SL, Carr SA. Identifying cellular targets of small-molecule probes and drugs with biochemical enrichment and SILAC. Methods Mol Biol 2012;803:129-40.   DOI
17 Rask-Andersen M, Masuram S, Schioth HB. The druggable genome: evaluation of drug targets in clinial trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 2014;54:9-26.   DOI
18 Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, et al. Target identification using drug affinity responsive target stability (DARTS). PNAS 2009;106:21984-9.   DOI
19 Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013;341:84-7.   DOI
20 Strickland EC, Geer MA, Tran DT, Adhikari J, West GM, DeArmond PD, Xu Y, Fitzgerald MC. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc 2013;8:148-61.   DOI
21 Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 2013;52:2744-92.   DOI
22 Chang J, Kim Y, Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification. Nat Prod Rep 2016;33:719-30.   DOI
23 Futamura Y, Muroi M, Osada H. Target identification of small molecules based on chemical biology approaches. Mol Biosyst 2013;9:897-914.   DOI
24 Huber KV, Olek KM, Muller AC, Tan CS, Bennett KL, Colinge J, Superti-Furga G. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat Methods 2015;12:1055-7.   DOI
25 Ashor AW. Inverted U shaped effect of nicotine on the severity of depressive symptoms: a population-based survey. J Young Pharm 2013;5:60-3.   DOI
26 Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W, Loo JA, Huang J. Drug affinity responsive target stability (DARTS) for small molecule target identification. Methods Mol Biol 2015;1263:287-98.   DOI
27 Bayer J, Glascher J, Finsterbusch J, Schulte LH, Sommer T. Linear and inverted U-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nat Commun 2018;9:1220.   DOI
28 Cools R, D'Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011;69:e113-25.   DOI
29 Zuardi AW, Rodrigues NP, Silva AL, Bernardo SA, Hallak JEC, Guimaraes FS, Crippa JAS. Inverted U-shaped dose-response curve of the anxiolytic effect of cannabidiol during public speaking in real life. Front Pharmacol 2017;8:259.   DOI
30 Wang B, Pu Y, Xu B, Tao J, Wang Y, Zhang T, Wu P. Self-microemulsifying drug delivery system improved oral bioavailability of 20(S)-protopanaxadiol: from preparation to evaluation. Chem Pharm Bull (Tokyo) 2015;63:688-93.   DOI
31 Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7.   DOI
32 Steeghs K, Benders A, Oerlemans F, de Haan A, Heerschap A, Ruitenbeek W, Jost C, van Deursen J, Perryman B, Pette D. Altered $Ca^{2+}$ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 1997;89:93-103.   DOI
33 In't Zandt HJ, de Groof AJ, Renema WK, Oerlemans FT, Klomp DW, Wieringa B, Heerschap A. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. J Physiol 2003;548:847-58.   DOI
34 Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
35 Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-18.   DOI
36 Yun TK. Panax ginseng-a non-organ-specific cancer preventive? Lancet Oncol 2001;2:49-55.   DOI
37 Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-9.   DOI
38 Qi LW, Wang CZ, Du GJ, Zhang ZY, Calway T, Yuan CS. Metabolism of ginseng and its interactions with drugs. Curr Drug Metab 2011;12:818-22.   DOI
39 Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J. Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chin Med 2012;7:2.   DOI
40 Ma GD, Chiu CH, Hsu YJ, Hou CW, Chen YM, Huang CC. Changbai mountain ginseng (Panax ginseng C.A. Mey) extract supplementation improves exercise performance and energy utilization and decreases fatigue-associated parameters in mice. Molecules 2017;22:237.   DOI
41 Oh HA, Kim DE, Choi HJ, Kim NJ, Kim DH. Anti-fatigue effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in mice. Biol Pharm Bull 2015;38:1415-9.   DOI
42 Guzun G, Timohhina N, Tepp K, Gonzalez-Granillo M, Shevchuk I, Chekulayev V, Kuznetsov AV, Kaambre T, Saks VA. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino Acids 2011;40:1333-48.   DOI
43 Choi JY, Woo TS, Yoon SY, Ike Campomayor Dela P, Choi YJ, Ahn HS, Lee YS, Yu GY, Cheong JH. Red ginseng supplementation more effectively alleviates psychological than physical fatigue. J Ginseng Res 2011;35:331-8.   DOI
44 Tan SJ, Li N, Zhou F, Dong QT, Zhang XD, Chen BC, Yu Z. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J Surg Res 2014;191:344-9.   DOI
45 Dzeja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M, Ingwall JS. Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. J Physiol 2011;589:5193-211.   DOI
46 Akki A, Su J, Yano T, Gupta A, Wang Y, Leppo MK, Chacko VP, Steenbergen C, Weiss RG. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. Am J Physiol Heart Circ Physiol 2012;303:H844-52.   DOI
47 Kitzenberg D, Colgan SP, Glover LE. Creatine kinase in ischemic and inflammatory disorders. Clin Trans Med 2016;5:31.
48 Lindinger MI, Kowalchuk JM, Heigenhauser GJ. Applying physicochemical principles to skeletal muscle acid-base status. Am J Physiol Regul Intergr Comp Physiol 2005;289:R891-4.   DOI
49 Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, Ahn YC, Son CG. Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebocontrolled trial. PLoS One 2013;8:e61271.   DOI
50 Lee N, Lee SH, Yoo HR, Yoo HS. Anti-fatigue effects of enzyme-modified ginseng extract: a randomized, double-blind, placebo controlled trial. J. Altern Complement Med 2016;22:859-64.   DOI
51 Lee NH, Jung HC, Lee S. Red ginseng as an ergogenic aid: a systematic review of clinical trials. J Exerc Nutrition Biochem 2016;20:13-9.   DOI
52 Arring NM, Millstine D, Marks LA, Nail LM. Ginseng as a treatment for fatigue: a systematic review. J Altern Complement Med 2018;24:624-33.   DOI
53 Bach HV, Kim J, Myung SK, Cho YA. Efficacy of ginseng supplements on fatigue and physical performance: a Meta-analysis. J Korean Med Sci 2016;31:1879-86.   DOI
54 Bae JW, Lee MH. Effect and putative mechanism of action of ginseng on the formation of glycated hemoglobin in vitro. J Ethnopharmacol 2004;91:137-40.   DOI
55 Li Z, Chen X, Niwa Y, Sakamoto S, Nakaya Y. Involvement of $Ca^{2+}$ activated $K^{+}$ channels in ginsenosides-induced aortic relaxation in rats. J Cardiovasc Pharmacol 2001;37:41-7.   DOI
56 Zhao YN, Wang ZL, Dai JG, Chen L, Huang YF. Preparation and quality assessment of high-purity ginseng total saponins by ion exchange resin combined with macroporous adsorption resin separation. Chin J Nat Med 2014;12:382-92.   DOI
57 Van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf) 2010;199:499-508.   DOI
58 Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 1992;281(1):21-40.   DOI
59 Wallimann T, Tokarska-Schlattner M, Neumann D, Epand RM, Epand RF, Andres RH, Widmer H. The phospho-creatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals and enhancement by creatine supplementation. In: Saks VA, editor. Molecular systems bioenergetics: energy for life. Weinheim: Wiley; 2007. p. 195-264.
60 Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules. ACS Chem Biol 2011;6:34-46.   DOI
61 Ouyang LF, Wang ZL, Dai JG, Chen L, Zhao YN. Determination of total ginsenosides in ginseng extracts using charged aerosol detection with post-column compensation of the gradient. Chin J Nat Med 2014;12:857-68.   DOI
62 Li J, Schantz A, Schwegler M, Shankar G. Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by $Octet^{(R)}$ biolayer interferometry. J Pharm Biomed Anal 2011;54:286-94.   DOI
63 Joo EJ, Ha YW, Shin H, Son SH, Kim YS. Generation and characterization of monoclonal antibody to ginsenoside Rg3. Biol Pharma Bull 2009;32:548-52.   DOI
64 Leung SM, Pitts RL. A novel approach using MALDI-TOF/TOF mass spectrometry and prestructured sample supports (AnchorChip Technology) for proteomic profiling and protein identification. Methods Mol Biol 2008;441:57-70.   DOI
65 Brosch M, Yu L, Hubbard T, Choudhary J. Accurate and sensitive peptide identification with Mascot percolator. J Proteome Res 2009;8:3176-81.   DOI
66 Ladbury JE, Chowdhry BZ. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 1996;3:791-801.   DOI