Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.149

Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors  

Kim, Tae-Ho (College of Pharmacy, Ajou University)
Custodio, Raly James (Uimyoung Research Institute in Neuroscience, Sahmyook University)
Cheong, Jae Hoon (Uimyoung Research Institute in Neuroscience, Sahmyook University)
Kim, Hee Jin (Uimyoung Research Institute in Neuroscience, Sahmyook University)
Jung, Yi-Sook (College of Pharmacy, Ajou University)
Publication Information
Biomolecules & Therapeutics / v.27, no.6, 2019 , pp. 584-590 More about this Journal
Abstract
Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer's disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptorbenzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with $IC_{50}$ of 1.19, $0.84{\mu}g/kg$, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.
Keywords
Luteolin; Sleep; Electroencephalogram; Adenosine A1 receptor; Adenosine A2A receptor; Insomnia;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Adib-Hajbaghery, M. and Mousavi, S. N. (2017) The effects of chamomile extract on sleep quality among elderly people: a clinical trial. Complement. Ther. Med. 35, 109-114.   DOI
2 Alam, M. N., Kumar, S., Rai, S., Methippara, M., Szymusiak, R. and McGinty, D. (2009) Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res. 1304, 96-104.   DOI
3 Atkin, T., Comai, S. and Gobbi, G. (2018) Drugs for insomnia beyond benzodiazepines: pharmacology, clinical applications, and discovery. Pharmacol. Rev. 70, 197-245.   DOI
4 Basheer, R., Strecker, R. E., Thakkar, M. M. and McCarley, R. W. (2004) Adenosine and sleep-wake regulation. Prog. Neurobiol. 73, 379-396.   DOI
5 Bastien, C. H., LeBlanc, M., Carrier, J. and Morin, C. M. (2003) Sleep EEG power spectra, insomnia, and chronic use of benzodiazepines. Sleep 26, 313-317.   DOI
6 Benington, J. H. and Heller, H. C. (1995) Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347-360.   DOI
7 Yin, S. B., Zhang, X. G., Chen, S., Yang, W. T., Zheng, X. W. and Zheng, G. Q. (2017) Adenosine A2A receptor gene knockout prevents l-3,4-dihydroxyphenylalanine-induced dyskinesia by downregulation of striatal GAD67 in 6-OHDA-lesioned Parkinson's mice. Front. Neurol. 8, 88.
8 Zanoli, P., Avallone, R. and Baraldi, M. (2000) Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia 71 Suppl 1, S117-S123.   DOI
9 Zhang, J. X., Xing, J. G., Wang, L. L., Jiang, H. L., Guo, S. L., Liu, R. (2017) Luteolin inhibits fibrillary ${\beta}$-amyloid1-40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-${\kappa}$B signaling pathways. Molecules 22, E334.   DOI
10 Zhang, Y., Li, M., Kang, R. X., Shi, J. G., Liu, G. T. and Zhang, J. J. (2012) NHBA isolated from Gastrodia elata exerts sedative and hypnotic effects in sodium pentobarbital-treated mice. Pharmacol. Biochem. Behav. 102, 450-457.   DOI
11 Coleta, M., Campos, M. G., Cotrim, M. D., Lima, T. C. and Cunha, A. P. (2008) Assessment of luteolin (3',4',5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res. 189, 75-82.   DOI
12 Bloom, H. G., Ahmed, I., Alessi, C. A., Ancoli-Israel, S., Buysse, D. J., Kryger, M. H., Phillips, B. A., Thorpy, M. J., Vitiello, M. V. and Zee, P. C. (2009) Evidence-based recommendations for the assessment and management of sleep disorders in older persons. J. Am. Geriatr. Soc. 57, 761-789.   DOI
13 Cho, S., Yang, H., Jeon, Y. J., Lee, C. J., Jin, Y. H., Baek, N. I., Kim, D., Kang, S. M., Yoon, M., Yong, H., Shimizu, M. and Han, D. (2012) Phlorotannins of the edible brown seaweed Ecklonia cava Kjellman induce sleep via positive allosteric modulation of gamma-aminobutyric acid type A-benzodiazepine receptor: a novel neurological activity of seaweed polyphenols. Food Chem. 132, 1133-1142.   DOI
14 Choi, H. S., Hong, K. B., Han, S. H. and Suh, H. J. (2018) Valerian/Cascade mixture promotes sleep by increasing non-rapid eye movement (NREM) in rodent model. Biomed. Pharmacother. 99, 913-920.   DOI
15 Cun, Y., Tang, L., Yan, J., He, C., Li, Y., Hu, Z. and Xia, J. (2014) Orexin A attenuates the sleep-promoting effect of adenosine in the lateral hypothalamus of rats. Neurosci. Bull. 30, 877-886.   DOI
16 Hutchison, I. C. and Rathore, S. (2015) The role of REM sleep theta activity in emotional memory. Front. Psychol. 6, 1439.   DOI
17 Fredholm, B. B., Bättig, K., Holmén, J., Nehlig, A. and Zvartau, E. E. (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51, 83-133.
18 Greene, R. W., Bjorness, T. E. and Suzuki, A. (2017) The adenosinemediated, neuronal-glial, homeostatic sleep response. Curr. Opin. Neurobiol. 44, 236-242.   DOI
19 Hu, Z., Oh, S., Ha, T. W., Hong, J. T. and Oh, K. W. (2018) Sleep-aids derived from natural products. Biomol. Ther. (Seoul) 26, 343-349.   DOI
20 Ishida, T., Obara, Y. and Kamei, C. (2009) Effects of some antipsychotics and a benzodiazepine hypnotic on the sleep-wake pattern in an animal model of schizophrenia. J. Pharmacol. Sci. 111, 44-52.   DOI
21 Kamphuis, J., Lancel, M., Koolhaas, J. M. and Meerlo, P. (2015) Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict. Brain Behav. Immun. 47, 149-154.   DOI
22 Krueger, J. M., Rector, D. M., Roy, S., Van Dongen, H. P., Belenky, G. and Panksepp, J. (2008) Sleep as a fundamental property of neuronal assemblies. Nat. Rev. Neurosci. 9, 910-919.   DOI
23 Nabavi, S. F., Russo, G. L., Daglia, M. and Nabavi, S. M. (2015b) Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem. 179, 305-310.   DOI
24 Dela Pena, I. J. I., Kim, H. J., de la Peña, J. B., Kim, M., Botanas, C. J., You, K. Y., Woo, T., Lee, Y. S., Jung, J. C., Kim, K. M. and Cheong, J. H. (2016) A tryptic hydrolysate from bovine milk alphas1-casein enhances pentobarbital-induced sleep in mice via the GABAA receptor. Behav. Brain Res. 313, 184-190.   DOI
25 Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Klotz, K. N. and Linden, J. (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527-552.
26 Kwon, Y. O., Hong, J. T. and Oh, K. W. (2017) Rosmarinic acid potentiates pentobarbital-induced sleep behaviors and non-rapid eye movement (NREM) sleep through the activation of GABAA-ergic systems. Biomol. Ther. (Seoul) 25, 105-111.   DOI
27 K. Pavlova, M. and Latreille, V. (2019) Sleep disorders. Am. J. Med. 132, 292-299.   DOI
28 Meerlo, P., de Bruin, E. A., Strijkstra, A. M. and Daan, S. (2001) A social conflict increases EEG slow-wave activity during subsequent sleep. Physiol. Behav. 73, 331-335.   DOI
29 Meerlo, P., Pragt, B. J. and Daan, S. (1997) Social stress induces high intensity sleep in rats. Neurosci. Lett. 225, 41-44.   DOI
30 Nabavi, S. F., Braidy, N., Gortzi, O., Sobarzo-Sanchez, E., Daglia, M., Skalicka-Woźniak, K. and Nabavi, S. M. (2015a) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res. Bull. 119, 1-11.   DOI
31 Neikrug, A. B. and Ancoli-Israel, S. (2010) Sleep disorders in the older adult - a mini-review. Gerontology 56, 181-189.   DOI
32 Rashid, A., Ong, E. K. and Yi Wong, E. S. (2012) Sleep quality among residents of an old folk's home in Malaysia. Iran. J. Nurs. Midwifery Res. 17, 512-519.
33 Ohayon, M. M. (2002) Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med. Rev. 6, 97-111.   DOI
34 Orhan, I. E., Daglia, M., Nabavi, S. F., Loizzo, M. R., Sobarzo-Sanchez, E. and Nabavi, S. M. (2015) Flavonoids and dementia: an update. Curr. Med. Chem. 22, 1004-1015.   DOI
35 Pearson, N. J., Johnson, L. L. and Nahin, R. L. (2006) Insomnia, trouble sleeping, and complementary and alternative medicine: analysis of the 2002 national health interview survey data. Arch. Intern. Med. 166, 1775-1782.   DOI
36 Risa, J., Risa, A., Adsersen, A., Gauguin, B., Stafford, G. I., van Staden, J. and Jager, A. K. (2004) Screening of plants used in southern Africa for epilepsy and convulsions in the GABAA-benzodiazepine receptor assay. J. Ethnopharmacol. 93, 177-182.   DOI
37 Sheth, S., Brito, R., Mukherjea, D., Rybak, L. P. and Ramkumar, V. (2014) Adenosine receptors: expression, function and regulation. Int. J. Mol. Sci. 15, 2024-2052.   DOI
38 Rivkees, S. A., Lasbury, M. E. and Barbhaiya, H. (1995) Identification of domains of the human A1 adenosine receptor that are important for binding receptor subtype-selective ligands using chimeric A1/ A2a adenosine receptors. J. Biol. Chem. 270, 20485-20490.   DOI
39 Rudolph, U. and Knoflach, F. (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov. 10, 685-697.   DOI
40 Satoh, S., Matsumura, H., Koike, N., Tokunaga, Y., Maeda, T. and Hayaishi, O. (1999) Region-dependent difference in the sleeppromoting potency of an adenosine A2A receptor agonist. Eur. J. Neurosci. 11, 1587-1597.   DOI
41 Thakkar, M. M., Winston, S. and McCarley, R. W. (2003) A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain. J. Neurosci. 23, 4278-4287.   DOI
42 Theoharides, T. C., Stewart, J. M., Hatziagelaki, E. and Kolaitis, G. (2015) Brain "fog," inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front. Neurosci. 9, 225.
43 Wasowski, C. and Marder, M. (2012) Flavonoids as GABAA receptor ligands: the whole story? J. Exp. Pharmacol. 4, 9-24.
44 Wolfman, C., Viola, H., Paladini, A., Dajas, F. and Medina, J. H. (1994) Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol. Biochem. Behav. 47, 1-4.   DOI