• Title/Summary/Keyword: affinity binding

Search Result 788, Processing Time 0.022 seconds

Influence of the N- and C-Terminal Regions of Antimicrobial Peptide Pleurocidin on Antibacterial Activity

  • Cho, Jaeyong;Choi, Hyemin;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1367-1374
    • /
    • 2012
  • Pleurocidin, a 25-mer antimicrobial peptide, has been known to exhibit potent antibacterial activity. To investigate the functional roles in N- and C-terminal regions of pleurocidin on the antibacterial activity, we designed four truncated analogs. The antibacterial susceptibility testing showed that pleurocidin and its analogs exerted antibacterial effect against various bacterial strains and further possessed specific activity patterns corresponding with their hydrophobic scale [pleurocidin > Anal 3 (1-22) > Anal 1 (4-25) > Anal 4 (1-19) > Anal 2 (7-25)]. Fluorescence experiments using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 3,3'-dipropylthiadicarbocyanine iodide [$diSC_3(5)$] indicated that the differences in antibacterial activity of the peptides were caused by its membrane-active mechanisms including membrane disruption and depolarization. Blue shift in tryptophan fluorescence demonstrated that the decrease in net hydrophobicity attenuates the binding affinity of pleurocidin to interact with plasma membrane. Therefore, the present study suggests that hydrophobicity in the N- and C-terminal regions of pleurocidin plays a key role in its antibacterial activity.

Metalloporphyrin Catalyzed Olefin Epoxidation and Molecular Orbital Study (Metalloporphyrin의 Olefin Epoxidation과 분자궤도함수론적 고찰)

  • Hwhan Jin Yeo;Hyun Chun Sin
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.558-564
    • /
    • 1992
  • Product yields were determined for the reaction of styrene with sodium hypochlorite (NaOCl) in CH$_2$Cl$_2$ with various substituted manganese porphyrin complexes as catalysts. In the presence of the electron withdrawing group and ortho-substituted manganese porphyrin complexes, reaction rate and epoxide selectivity are increased. Also reaction rate and epoxide selectivity are largely increased by the presence of imidazole which behaves as axial ligand of the manganese porphyrin complexes. By the kinetic study with Michealis-Menten equation, the factor significantly affected to catalytic ability is $K_m$ value. A large binding affinity consists with the low $K_m$. With theoretical analysis by EHMO calculation, the results are in good agreement with experimental data.

  • PDF

Heterogeneous Sequences of Brain Cytoplasmic 200 RNA Formed by Multiple Adenine Nucleotide Insertions

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.495-500
    • /
    • 2019
  • Brain cytoplasmic 200 RNA (BC200 RNA), originally identified as a neuron-specific non-coding RNA, is also observed in various cancer cells that originate from non-neural cells. Studies have revealed diverse functions of BC200 RNA in cancer cells. Accordingly, we hypothesized that BC200 RNA might be modified in cancer cells to generate cancerous BC200 RNA responsible for its cancer-specific functions. Here, we report that BC200 RNA sequences are highly heterogeneous in cancer cells by virtue of multiple adenine nucleotide insertions in the internal A-rich region. The insertion of adenine nucleotides enhances BC200 RNA-mediated translation inhibition, possibly by increasing the binding affinity of BC200 RNA for eIF4A (eukaryotic translation initiation factor 4A).

Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study

  • Putra, Wira Eka;Salma, Wa Ode;Rifa'i, Muhaimin
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2019
  • Inflammation is the crucial biological process of immune system which acts as body's defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha ($TNF-{\alpha}$) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the proinflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the $TNF-{\alpha}$ or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the $TNF-{\alpha}$ and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases. Finally, this study needs further examination and evaluation to validate the potency of Sambucus bioactive compounds.

Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler

  • Seung Tae Im;Seung-Hong Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.184-194
    • /
    • 2023
  • Recently, interest in food-derived bioactive peptides as promising ingredients for the prevention and improvement of hypertension is increasing. The purpose of this study was to determine the structure and antihypertensive effect of an antioxidant peptide purified from velvet antler in a previous study and evaluate its potential as a various bioactive peptide. Molecular weight (MW) and amino acid sequences of the purified peptide were determined by quadrupole time-of-flight electrospray ionization mass spectroscopy. The angiotensin I-converting enzyme (ACE) inhibition activity of the purified peptide was assessed by enzyme reaction methods and in silico molecular docking analysis to determine the interaction between the purified peptide and ACE. Also, antihypertensive effect of the purified peptide in spontaneously hypertensive rats (SHRs) was investigated. The purified antioxidant peptide was identified to be a pentapeptide Asp-Asn-Arg-Tyr-Tyr with a MW of 730.31 Da. This pentapeptide showed potent inhibition activity against ACE (IC50 value, 3.72 μM). Molecular docking studies revealed a good and stable binding affinity between purified peptide and ACE and indicated that the purified peptide could interact with HOH2570, ARG522, ARG124, GLU143, HIS387, TRP357, and GLU403 residues of ACE. Furthermore, oral administration of the pentapeptide significantly reduced blood pressure in SHRs. The pentapeptide derived from enzymatic hydrolysate of velvet antler is an excellent ACE inhibitor. It might be effectively applied as an animal-based functional food ingredient.

Studies on the Immunodiagnosis of Rabbit Clonorchiasis 2. Immunoamnity purification of whole worm antigen and characterization of egg, metacercaria and adult antigens of Clonorchis sinensis (간흡충 감염 가토의 면역진단에 대한 연구 2. 성충 조항원의 정제 및 발육단계별 항원 분석)

  • Lee, Ok-Ran;Jeong, Pyeong-Rim;Nam, Hae-Seon
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.2
    • /
    • pp.73-86
    • /
    • 1988
  • The sensitivity and specificity of crude and affinity-purified antigens of Clcnorchis sinensis obtained from the infected rabbits were studied. Stage-specific antigenic proteins from the eggs, metacercariae and adult worms were characterized by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent astray (ELISA). The results were as follows: 1. The antibody.binding antigen (ABA) purified from whole worm crude antigen (IVWA) by CNBr-activated Sepharose 4B affinity chromatography made :l specific bands against rabbit antisera on Ouchterlony gel diffusion plate, while WWA made 7 bands. Major WWA protein bands by SDS-PAGE were found at 16, 300~18, 500 and 28, 000~29, 000 daltons, while major ABA protein bands were at 18, 000~21, 000 and 29, 000~31, 000 daltons. The reactivity of ABA with rabbit anti-sera in ELISA was remarkably less sensitive than that of WWA. 2. Molecular weights of egg antigen (EGA), metacercarial antigen (MEA) and adult worm antigen (WWA) of C. sinensis ranged from 15, 000-200, 000 daltons, 15, 000-100, 000 daltons and 11, 000~80, 000 daltons, respectively. Major WWA proteins consisted mainly of polypeptide bands of low molecular weight, less than 31, 000 daltons, while those of EGA and MEA consisted of higher molecular T.eights than 30, 000 daltons. 3. The ELISA reactivities of WWA to rabbit anti.sera were remarkably greater than those of MEA. EGA showed negative reaction throughout the experiments. WWA showed higher optical density (O.D.) than 1.0, when reacted with rabbit anti-sera obtained at 4~6 weeks after the infection. In the rabbit anti-sera later than 12 weeks after the infection, the O.D. reacting witll WWA showed a plateau without variation. MEA shoT.ed relatively low O.D. values (<0.6), when reacted with anti-sera from lightly in(ected groups throughout the experiments, althougll there were some wealth positive cases (O.D.>0.6) ill heavily infected groups. MEA reacted with rabbit anti-sera showed negative results on Ouchterlony gel diffusion plates. Summarizing the above results, it is suggested that the whole worm antigen prepared from the adult worms of C. sinensis is most highly antigenic. However, this antigen might reveal cross reactions with other trematodes such as Paragonimus westermani, therefore, purification of antigenic proteins from the crude antigen is essential 18 increase the sensitivity and specificity for the immuncdiagnosis of clonorchiasis.

  • PDF

Characterization of Humanized Antibody Produced by Apoptosis-Resistant CHO Cells under Sodium Butyrate-Induced Condition

  • Kim, No-Soo;Chang, Kern-Hee;Chung, Bo-Sup;Kim, Sung-Hyun;Kim, Jung-Hoe;Lee, Gyun-min
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.926-936
    • /
    • 2003
  • Overexpression of human Bcl-2 protein in recombinant Chinese hamster ovary (rCHO) cells producing humanized antibody (SH2-0.32) considerably suppressed sodium butyrate (NaBu)-induced apoptosis during batch culture by using commercially available serum-free medium, which extended the culture longevity. Due to the extended culture longevity provided by the anti-apoptotic effect of Bcl-2 overexpression, the final antibody concentration of 14C6-bcl-2 culture (Bcl-2 high producer, $23\;\mu\textrm{g}\;ml^{-1}$) was 2 times higher than that of the $SH2-0.32-{\Delta}bcl-2$ culture (cells transfected with bcl-2-deficient plasmid, $10.5\;\mu\textrm{g}\;ml^{-1}$) in the presence of NaBu. To determine the effect of NaBu/Bcl-2 overexpression on the molecular integrity of protein products, antibodies purified from 14C6-bcl-2 and $SH2-0.32-{\Delta}bcl-2$ cultures in the presence of NaBu were characterized by using various molecular assay systems. For comparison, antibody purified from the parental rCHO cell culture (SH2-0.32) in the absence of NaBu was also characterized. No significant changes in molecular weight of antibodies could be observed by SDS-PAGE. From GlycoSep-N column analysis, it was found that the core oligosaccharide structure ($GlcNAc_2Man_3GlcNAc_2$) was not affected by NaBu/Bcl-2 overexpression, while the microheterogeneity of N-linked oligosaccharide structure was slightly affected. Compared with the antibody produced in the absence of NaBu, the proportion of neutral oligosaccharides was increased from 10% (14C6-bcl-2) to 16% ($SH2-0.32-{\Delta}bcl-2$) in the presence of NaBu, which was accompanied by the reduced proportion of acidic oligosaccharides, especially of monosialylated and disialylated forms. The changes in microheterogeneous oligoformal structures of antibody in turn affected the mobility of antibody isoforms in isoelectric focusing (IEF), resulting in the occurrence of some more basic antibody isoforms produced in the presence of NaBu. However, the antigen-antibody binding properties were not changed by alteration of glycosylation pattern. The competitive enzyme-linked immunosorbent assay (ELISA) showed that the antibody produced by NaBu/Bcl-2 overexpression maintained its antigen-antibody binding properties with binding affinity of about $2.5{\times}10^9{\;}M^{-1}$. Taken together, no significant effects of NaBu/Bcl-2 overexpression on the molecular integrity of antibodies, produced by using serum-free medium, could be observed by the molecular assay systems.

Structural and Functional Analysis of Nitrogenase Fe Protein with MgADP bound and Amino Acid Substitutions (MgADP 결합 및 아미노산 치환 Nitrogenase Fe 단백질의 구조 및 기능 분석)

  • Jeong, Mi-Suk;Jang, Se-Bok
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.752-760
    • /
    • 2004
  • The function of the [4Fe-4S] cluster containing iron (Fe-) protein in nitrogenase catalysis is to serve as the nucleotide-dependent electron donor to the MoFe protein which contains the sites for substrate binding and reduction. The ability of the Fe protein to function in this manner is dependent on its ability to adopt the appropriate conformation for productive interaction with the MoFe protein and on its ability to change redox potentials to provide the driving force required for electron transfer. The MgADP-bound (or off) conformational state of the nitrogenase Fe protein structure described reveals mechanisms for long-range communication from the nucleotide-binding sites to control affinity of association with the MoFe protein component. Two pathways, termed switches I and II, appear to be integral to this nucleotide signal transduction mechanism. In addition, the structure of the MgADP bound Fe protein provides the basis for the changes in the biophysical properties of the [4Fe-4S] observed when Fe protein binds nucleotides. The structures of the nitrogenase Fe protein with defined amino acid substitutions in the nucleotide dependent signal transduction pathways of the Switch I and Switch II have been determined by X-ray diffraction methods. These two pathways have been also implicated by site directed mutagenesis studies, structural analysis and analogies to other proteins that utilize similar nucleotide dependent signal transduction pathways. We have examined the validity of the assignment of these pathways in linking the signals generated by MgATP binding and hydrolysis to macromolecular complex formation and intermolecular electron transfer. The results provide a structural basis for the observed biophysical and biochemical properties of the Fe protein variants and interactions within the nitrogenase Fe protein-MoFe protein complex.

Functional Expression of Soluble Streptavidin in Escherichia coli (수용성 streptavidin의 Escherichia coli 에서 기능적 발현)

  • Han, Seung Hee;Kim, Hyeong Min;Lim, Myeong Woon;Kim, Jin-Kyoo
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.631-637
    • /
    • 2015
  • Streptavidin, a protein produced by Streptomyces avidinii, strongly binds up to four molecules of vitamin H, d-biotin exhibiting the dissociation constant of about 10−15 M. This strong binding affinity has been applied for detection and characterization of numerous biological molecules suggesting expression and purification of functional streptavidin should be very useful for the application of this streptavidin-biotin interaction. To express a soluble streptavidin in Escherichia coli, We synthesized streptavidin genes and cloned into pET-22b plasmid, which uses T7 RNA polymerase/T7 promoter expression systems containing pelB leader for secretion into periplasmic space and six polyhistidine tags at C-terminus for purification of expressed proteins. Although streptavidin is toxic to Escherichia coli due to strong biotin binding property, streptavidin was expressed very sufficiently in a range of 10-20 mg/ml. In SDS-PAGE, the size of purified protein was shown as 17 kDa in denatured condition (boiling) and 68 kDa in native condition (without boiling) suggesting tetramerization of monomeric subunit by non-covalent association. Further analysis by size-exclusion chromatography supported streptavidin’s tetrameric structure as well. In addition, soluble streptavidin detected biotinylated proteins in westernblot indicating its functional activity to biotin. Taken these results together, it concluded that our simple expression system was able to show high yield, homotetrameric formation and biotin binding activity analogous to natural streptavidin.

Determination of paraquat-resistant biotype on Conyza canadensis and the resistant mechanism (Paraquat 저항성 생태형 망초의 선발과 저항성 기작)

  • Kim, Sung-Eun;Kim, Seung-Yong;Ahn, Sul-Hwa;Chun, Jae-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.88-96
    • /
    • 2005
  • Paraquat-resistant biotype of Conyza canadensis (L.) Cronq. was determined by chlorophyll loss and random amplified polymorphic DNA (RAPD) analysis and the resistant mechanism was investigated with respect to absorption, translocation, and binding constant. RAPD analysis for paraquat resistant (R) and susceptible (S) biotypes found in a pear orchard revealed that the biotypes possessed remote genetic relationship. Chlorophyll loss, as an indication of paraquat toxicity, of S biotype was 7.8-fold greater than that of R biotype. There were no differences in contents of epicuticular wax and cuticle and amounts of [14C]paraquat penetrating the cuticle between the two biotypes. Little translocation of the herbicide out of the treated leaf was observed in either biotype. Binding constants of paraquat to the cell wall and thylakoid membrane were 7.4-fold and 16.9-fold, respectively, higher in R biotype than in S biotype. The results suggest that the resistance mechanism of C. canadensis biotype is due partly to high binding affinity of paraquat to the cell wall and thylakoid membrane.