Browse > Article
http://dx.doi.org/10.5352/JLS.2004.14.5.752

Structural and Functional Analysis of Nitrogenase Fe Protein with MgADP bound and Amino Acid Substitutions  

Jeong, Mi-Suk (Korea Nanobiotechnology Center, Pusan National University)
Jang, Se-Bok (Korea Nanobiotechnology Center, Pusan National University)
Publication Information
Journal of Life Science / v.14, no.5, 2004 , pp. 752-760 More about this Journal
Abstract
The function of the [4Fe-4S] cluster containing iron (Fe-) protein in nitrogenase catalysis is to serve as the nucleotide-dependent electron donor to the MoFe protein which contains the sites for substrate binding and reduction. The ability of the Fe protein to function in this manner is dependent on its ability to adopt the appropriate conformation for productive interaction with the MoFe protein and on its ability to change redox potentials to provide the driving force required for electron transfer. The MgADP-bound (or off) conformational state of the nitrogenase Fe protein structure described reveals mechanisms for long-range communication from the nucleotide-binding sites to control affinity of association with the MoFe protein component. Two pathways, termed switches I and II, appear to be integral to this nucleotide signal transduction mechanism. In addition, the structure of the MgADP bound Fe protein provides the basis for the changes in the biophysical properties of the [4Fe-4S] observed when Fe protein binds nucleotides. The structures of the nitrogenase Fe protein with defined amino acid substitutions in the nucleotide dependent signal transduction pathways of the Switch I and Switch II have been determined by X-ray diffraction methods. These two pathways have been also implicated by site directed mutagenesis studies, structural analysis and analogies to other proteins that utilize similar nucleotide dependent signal transduction pathways. We have examined the validity of the assignment of these pathways in linking the signals generated by MgATP binding and hydrolysis to macromolecular complex formation and intermolecular electron transfer. The results provide a structural basis for the observed biophysical and biochemical properties of the Fe protein variants and interactions within the nitrogenase Fe protein-MoFe protein complex.
Keywords
Fe protein; [FeS] Cluster; Nucleotide; Amino acid substitutions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stephens, P. J., McKenna, C. E., Smith, B. E., Nguyen, H. T., McKenna, M. C., Thomson, A. J., Devlin, F., and Jones, J. B. 1979. Circular dichroism and magnetic circular dichroism of nitrogenase proteins. Proc. Natl. Acad. Sci. U.S.A. 76, 2585-2589   DOI   ScienceOn
2 Walker, G. A., and Mortenson, L. E. 1974. Effect of magnesium adenosine 5'-triphosphate on the accessibility of the iron of clostridial azoferredoxin, a component of nitrogenase. Biochemistry 13, 2382-2388   DOI   ScienceOn
3 Watt, G. D., Wang, Z. C., and Knotts, R. R. 1986. Redox reactions of and nucleotide binding to the iron protein of Azotobacter vinelandii. Biochemistry 25, 8156-8162   DOI
4 Wolle, D., Dean, D. R., and Howard, J. B. 1992. Nucleotide- iron-sulfur cluster signal transduction in the nitrogenase iron-protein: the role of Asp125. Science 258, 992-995   DOI
5 Zumft, W. G., Palmer, G., and Mortenson, L. E. 1973. Electron paramagnetic resonance studies on nitrogenase. II. Interaction of adenosine 5'-triphosphate with azoferredoxin. Biochim. Biophys. Acta. 292, 413-421   DOI   ScienceOn
6 Ryle, M. J. and Seefeldt, L. C. 1996. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering. Biochemistry 35, 4766-4775   DOI   ScienceOn
7 Ryle, M. J., Lanzilotta, W. N., and Seefeldt, L. C. 1996. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135.Biochemistry 35, 9424-9434   DOI   ScienceOn
8 Simpson, F. B. and Burris, R. H. 1984. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224, 1095-1097   DOI
9 Schindelin, H., Kisker, C., Schtessman, J. L., Howard, J. B., and Rees, D. C. 1997. Structure of ADP AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370-376   DOI   ScienceOn
10 Shah, V. K., and Brill, W. J. 1977. Isolation of an iron- molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. U.S.A. 74, 3249-3253   DOI   ScienceOn
11 Smith, B. E. and Eady, R. R. 1992. Metalloclusters of the nitrogenases. Eur. J. Biochem. 205, 1-15   DOI   ScienceOn
12 Spee, J. H., Arendsen, A. F., Wassink, H., Marritt, S. J., Hagen, W. R., and Haaker, H. 1998. Redox properties and electron paramagnetic resonance spectroscopy of the transition state complex of Azotobacter vinelandii nitrogenase. FEBS Lett. 432, 55-58   DOI   ScienceOn
13 Stephens, P. J., Jollie, D. R., and Warshel, A. 1996. Protein control of redox potentials of ironminus sign sulfur proteins. Chem. Rev. 96, 2491-2513   DOI   ScienceOn
14 Lindahl, P. A., Gorelick, N. J., M$\ddot{u}$nck, E., and Orme-Johnson, W. H. 1987. EPR and Mossbauer studies of nucleotide-bound nitrogenase iron protein from Azotobacter vinelandii. J. Biol. Chem. 262, 14945-14953
15 Mortenson, L. E., Seefeldt, L. C., Morgan, T. V. and Bolin, J. T. 1993. The role of metal clusters and MgATP in nitrogenase catalysis. Adv. Enzymol. Rel. Areas Mol. Biol. 67, 274-299
16 Peters, J. W., Fisher, K., and Dean, D. R. 1995. Nitrogenase structure and function: A biochemical-genetic perspective. Annu. Rev. Microbiol. 49, 335-366   DOI   ScienceOn
17 Ljones, T. and Burris, R. H. 1978. Nitrogenase: the reaction between the Fe protein and bathophenanthrolinedisulfonate as a probe for interactions with MgATP. Biochemistry 17, 1866-1872   DOI
18 Meyer, J., Gaillard, J., and Moulis, J. M. 1988. Hydrogen-1 nuclear magnetic resonance of the nitrogenase iron protein (Cp2) from Clostridium pasteurianum. Biochemistry 27, 6150-6156   DOI   ScienceOn
19 Nicholls, A., Sharp, K. A., and Honig, B. 1991. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons Proteins 11, 281-296   DOI   ScienceOn
20 Renner, K. A., and Howard, J. B. 1996. Aluminum fluoride inhibition of nitrogenase: stabilization of a nucleotide.Fe- protein.MoFe-protein complex. Biochemistry 35, 5353-5358.   DOI   ScienceOn
21 Ryle, M. J., Lanzilotta, W. N., Seefeldt, L. C., Scarrow, R. C., and Jensen, G. M. 1996. Circular dichroism and x-ray spectroscopies of Azotobacter vinelandii nitrogenase iron protein. MgATP and MgADP induced protein conformational changes affecting the [4Fe-4S] cluster and characterization of a [2Fe-2S] form. J. Biol. Chem. 271, 1551- 1557   DOI
22 Jang, S. B., Seefeldt, L. C., and Peters, J. W. 2000. Modulating the midpoint potential of the [4Fe-4S] cluster of the nitrogenase Fe protein. Biochemistry 39, 641-648   DOI   ScienceOn
23 Lanzilotta, W. N., Holz, R. C., and Seefeldt, L. C. 1995. Proton NMR investigation of the [4Fe-4S]1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes. Biochemistry 34, 15646-15653   DOI   ScienceOn
24 Jensen, G. M., Warshel, A., and Stephens, P. J. 1994. Calculation of the redox potentials of iron-sulfur proteins: the 2-/3-couple of [Fe4S*4Cys4] clusters in Peptococcus aerogenes ferredoxin, Azotobacter vinelandii ferredoxin I, and Chromatium vinosum high-potential iron protein. Biochemistry 33, 10911-10924   DOI
25 Langen, R., Jensen, G. M., Jacob, U., Stephens, P. J., and Warshel, A. 1992. Protein control of iron-sulfur cluster redox potentials. J. Biol. Chem. 267, 25625-25627
26 Lanzilotta, W. N., and Seefeldt, L. C. 1997. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Biochemistry 36, 12976-12983   DOI   ScienceOn
27 Lanzilotta, W. N., Fisher, K., and Seefeldt, L. C. 1997. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.J. Biol. Chem. 272, 4157-65   DOI   ScienceOn
28 Lanzilotta, W. N., Ryle, M. J., and Seefeldt, L. C. 1995. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Biochemistry 34, 10713-10723   DOI   ScienceOn
29 Georgiadis, M. M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J. J., and Rees, D. C. 1992. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257, 1653-1659   DOI
30 Hageman, R. V., and Burris, R. H. 1978. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc. Natl. Acad. Sci. U.S.A. 75, 2699-2702   DOI   ScienceOn
31 Heering, H. A., Bulsink, Y. B. M., Hagen, W. R., and Meyer, T. E. 1995. Reversible super-reduction of the cubane [4Fe-4S](3+;2+;1+) in the high-potential iron-sulfur protein under non-denaturing conditions. EPR spectroscopic and electrochemical studies. Eur. J. Biochem. 232, 811-817   DOI
32 Howard, J. B. and Rees, D. C. 1994. Nitrogenase: a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63, 235-264   DOI   ScienceOn
33 Howard, J. B., and Rees, D. C. 1996. Structural Basis of Biological Nitrogen Fixation. Chem. Rev. 96, 2965-2982   DOI   ScienceOn
34 Jacobson, M. R.; Brigle, K. E.; Bennett, L. T., Setterquist, R. A.; Wilson, M. S., Cash, V. L., Beyon, J., Newton, W. E., Dean, D. R. 1989. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J. Bacteriol. 171, 1017-1027
35 Jang, S. B., Seefeldt, L. C., and Peters, J. W. 2000. Insights into nucleotide signal transduction in nitrogenase: structure of an iron protein with MgADP bound. Biochemistry 39, 14745-14752   DOI   ScienceOn
36 Jang, S. B., Jeong, M. S., Seefeldt, L. C., Peters, J. W. 2004. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. accepted to J. Biol. Inorg. Chem
37 Breiter, D. R., Meyer, T. E., Rayment, L., and Holden, H. M. 1991. The molecular structure of the high potential iron-sulfur protein isolated from Ectothiorhodospira halophila determined at 2.5-A resolution. J. Biol. Chem. 266, 18660-18667
38 Burgess, B. K. and Lowe, D. J. 1996. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983-3011   DOI   ScienceOn
39 Brigle, K. E.; Newton, W. E.; Dean, D. R. 1985. Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37, 37-44   DOI   ScienceOn
40 Burgess, B. K. 1984. In advances in nitrogen fixation. pp. 103-114, In Veeger, C. and Newton, W. E. (eds.), Martinus Nijhoff, Boston
41 Burris, R. H. (1991) Nitrogenases. J. Biol. Chem. 266, 9339-9342
42 Carter, C. W., Jr., Kraut, J., Freer, S. T., Xuong, N. H., Alden, R. A., and Bartsch, R. G. 1974. Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. J. Biol. Chem. 249, 4212-4225
43 Chen, L., Gavini, N., Tsuruta, H., Eliezer, D., Burgess, B. K., Doniach, S., and Hodgson, K. O. 1994. MgATP-induced conformational changes in the iron protein from Azotobacter vinelandii, as studied by small-angle x-ray scattering. J. Biol. Chem. 269, 3290-3294
44 Duyvis, M. G., Wassink, H., and Haaker, H. 1996. Formation and characterization of a transition state complex of Azotobacter vinelandii nitrogenase. FEBS Lett. 380, 233-236   DOI   ScienceOn
45 Esnouf, R. M. 1997. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph Model. 15, 132-134   DOI   ScienceOn
46 Adman, E., Watenpaugh, K. D., and Jensen, L. H. 1975. NH---S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. Proc. Natl. Acad. Sci. USA 72, 4854-4858   DOI   ScienceOn