Browse > Article
http://dx.doi.org/10.20307/nps.2019.25.3.215

Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study  

Putra, Wira Eka (Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang)
Salma, Wa Ode (Department of Nutrition, Faculty of Medicine, Halu Oleo University)
Rifa'i, Muhaimin (Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University)
Publication Information
Natural Product Sciences / v.25, no.3, 2019 , pp. 215-221 More about this Journal
Abstract
Inflammation is the crucial biological process of immune system which acts as body's defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha ($TNF-{\alpha}$) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the proinflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the $TNF-{\alpha}$ or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the $TNF-{\alpha}$ and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases. Finally, this study needs further examination and evaluation to validate the potency of Sambucus bioactive compounds.
Keywords
Bioinformatics study; inflammation; Sambucus; $TNF-{\alpha}$; TRAIL;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Medzhitov, R. Cell 2010, 140, 771-776.   DOI
2 Okin, D.; Medzhitov, R. Curr. Biol. 2012, 22, R733-R740.   DOI
3 Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Oncotarget 2017, 9, 7204-7218.   DOI
4 Nathan, C. Nature 2002, 420, 846-852.   DOI
5 Liu, Z.; Wang, Y.; Wang, Y.; Ning, Q.; Zhang, Y.; Gong, C.; Zhao, W.; Jing, G.; Wang, Q. Int. Immunopharmacol. 2016, 35, 210-216.   DOI
6 Czaja, A. J. World J. Gastroenterol. 2014, 20, 2515-2532.   DOI
7 Trinchieri, G. Annu. Rev. Immunol. 2012, 30, 677-706.   DOI
8 Hotamisligil, G. S.; Erbay, E. Nat. Rev. Immunol. 2008, 8, 923-934.   DOI
9 Libby, P. Am. J. Clin. Nutr. 2006, 83, 456S-460S.   DOI
10 Wyss-Coray, T.; Mucke, L. Neuron 2002, 35, 419-432.   DOI
11 Arulselvan, P.; Fard, M. T.; Tan, W. S.; Gothai, S.; Fakurazi, S.; Norhaizan, M. E.; Kumar, S. S. Oxid. Med. Cell. Longev. 2016, 2016, 5276130.   DOI
12 Chen, C.; Huang, H.; Wu, C. H. Methods Mol. Biol 2017, 1558, 3-39.   DOI
13 Zhou, Y.; Hong, Y.; Huang, H. Kidney Blood Press. Res. 2016, 41, 901-910.   DOI
14 Lintermans, L. L.; Stegeman, C. A.; Heeringa, P.; Abdulahad, W. H. Front. Immunol. 2014, 5, 504.   DOI
15 Christensen, L. P.; Kaack, K.; Frette, X. C. Eur. Food Res. Technol. 2008, 227, 293-305.   DOI
16 Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. Food Chemistry 2009, 114, 511-515.   DOI
17 Ozgen, M.; Scheerens, J. C.; Reese, R. N.; Miller, R. A. Pharmacogn. Mag. 2010, 6, 198-203.   DOI
18 Ho, G. T.; Wangensteen, H.; Barsett, H. Int. J. Mol. Sci. 2017, 18, 584.   DOI
19 Putra, W. E.; Rifa'i, M. Nat. Prod. Sci. 2019, 25, 59-63.   DOI
20 Stepanchikova, A. V.; Lagunin, A. A.; Filimonov, D. A.; Poroikov, V. V. Curr. Med. Chem. 2003, 10, 225-233.   DOI
21 Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B. A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. H. Nucleic Acids Res. 2016, 44, D1202-D1213.   DOI
22 Putra, W. E. FUW Trends Sci. Technol. J. 2018, 3, 682-685.
23 Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F. T.; de Beer, T. A. P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. Nucleic Acids Res. 2018, 46, W296-W303.   DOI
24 Putra, W. E.; Wafaretta, E.; Ardiana, O.; Januarisasi, I. D.; Soewondo, A.; Rifa'i, M. Bio. Research. 2017, 14, 201-213.
25 Schmid-Schonbein, G. W. Annu. Rev. Biomed. Eng. 2006, 8, 93-151.   DOI
26 Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455-461.   DOI
27 Liu, C. H.; Abrams, N. D.; Carrick, D. M.; Chander, P.; Dwyer, J.; Hamlet, M. R. J.; Macchiarini, F.; PrabhuDas, M.; Shen, G. L.; Tandon, P.; Vedamony, M. M. Nat. Immunol. 2017, 18, 1175-1180.   DOI
28 Yamauchi, H.; Woodward, W. A.; Valero, V.; Alvarez, R. H.; Lucci, A.; Buchholz, T. A.; Iwamoto, T.; Krishnamurthy, S.; Yang, W.; Reuben, J. M.; Hortobagyi, G. N.; Ueno, N. T. Oncologist 2012, 17, 891-899.   DOI
29 DeFronzo, R. A.; Ferrannini, E.; Groop, L.; Henry, R. R.; Herman, W. H.; Holst, J. J.; Hu, F. B.; Kahn, C. R.; Raz, I.; Shulman, G. I.; Simonson, D. C.; Testa, M. A.; Weiss, R. Nat. Rev. Dis. Primers 2015, 1, 15019.   DOI
30 Fakhoury, M.; Negrulj, R.; Mooranian, A.; Al-Salami, H. J. Inflamm. Res. 2014, 7, 113-120.   DOI
31 Dai, X.; Zhang. J.; Arfuso, F.; Chinnathambi, A.; Zayed, M. E.; Alharbi, S. A.; Kumar, A. P.; Ahn, K. S.; Sethi, G. Exp. Biol. Med. (Maywood) 2015, 240, 760-773.   DOI
32 Chao, C. Y.; Mong, M. C.; Chan, K. C.; Yin, M. C. Mol. Nutr. Food Res. 2010, 54, 388-395.   DOI
33 Srinivasan, S.; Kumar, R.; Koduru, S.; Chandramouli, A.; Damodaran, C. Apoptosis 2010, 15, 153-161.   DOI
34 Sellappan, S.; Akoh, C. C.; Krewer, G. J. Agric. Food Chem. 2002, 50, 2432-2438.   DOI
35 Mattila, P.; Kumpulainen, J. J. Agric. Food Chem. 2002, 50, 3660-3667.   DOI
36 Chao, P. C.; Hsu, C. C.; Yin, M. C. Nutr. Metab.(Lond) 2009, 6, 33.   DOI
37 Makena, P. S.; Chung, K. T. Food Chem. Toxicol. 2007, 45, 1899-1909.   DOI
38 Prakash, D.; Suri, S.; Upadhyay, G.; Singh, B. N. Int. J. Food Sci. Nutr. 2007, 58, 18-28.   DOI
39 Jung, U. J.; Lee, M. K.; Park, Y. B.; Jeon, S. M.; Choi, M. S. J. Pharmacol. Exp. Ther. 2006, 318, 476-483.   DOI
40 Armutcu, F.; Akyol, S.; Ustunsoy, S.; Turan, F. F. Exp. Ther. Med. 2015, 9, 1582-1588.   DOI
41 Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A. K. PLoS One 2010, 5, e12029.   DOI
42 Jung, W. K.; Lee, D. Y.; Kim, J. H.; Choi, I.; Park, S. G.; Seo, S. K.; Lee, S. W.; Lee, C. M.; Park, Y. M.; Jeon, Y. J.; Lee, C. H.; Jeon, B. T.; Qian, Z. J.; Kim, S. K.; Choi, I. W. Process Biochem. 2008, 43, 783-787.   DOI
43 Serreli, G.; Deiana, M. Antioxidants 2018, 7, 170.   DOI
44 Valko-Rokytovska, M.; Ocenas, P.; Salayova, A.; Kostecka, Z. J. Chromatogr. Sep. Tech. 2018, 9, 1-8.
45 Bonifacic, D.; Aralica, M.; Sotosek Tokmadzic, V.; Racki, V.; Tuskan-Mohar, L.; Kucic, N. Biomarkers 2017, 22, 790-797.   DOI
46 Tuck, K. L.; Hayball, P. J.; Stupans, I. J. Agric. Food Chem. 2002, 50, 2404-2409.   DOI
47 Hladilkova, J.; Callisen, T. H.; Lund, M. J. Phys. Chem. B. 2016, 120, 3303-3310.   DOI