• Title/Summary/Keyword: affine model

Search Result 138, Processing Time 0.03 seconds

Geometrical Comparisons between Rigorous Sensor Model and Rational Function Model for Quickbird Images

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.750-752
    • /
    • 2003
  • The objective of this investigation is to compare the geometric precision of Rigorous Sensor Model and Rational Function Model for QuickBird images. In rigorous sensor model, we use the on-board data and ground control points to fit an orbit; then, a least squares filtering technique is applied to collocate the orbit. In rational function model, we first use the rational polynomial coefficients provided by the satellite company. Then the systematic bias of the coefficients is compensated by an affine transformation using ground control points. Experimental results indicate that, the RFM provides a good approximation in the position accuracy.

  • PDF

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

Term Structure Estimation Using Official Rate

  • Rhee, Joon Hee;Kim, Yoon Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.655-663
    • /
    • 2003
  • The fundamental tenn structure model is based on the modelling of the short rate. It is well-known that the short rate depends on the interest rate policy of monetary authorities, especially on the official rate. Babbs and Webber(1994) modelled the tenn structure of interest rates using the official rate. They assume that the official rate follows a jump process. This reflects that the official rate infrequently changes. In this paper, we test this official tenn structure model and compare the jump-diffusion model with the pure diffusion model.

Epipolar Resampling for High Resolution Satellite Imagery Based on Parallel Projection (평행투영 기반의 고해상도 위성영상 에피폴라 재배열)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Chang, Hwi-Jeong;Jeong, Ji-Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.81-88
    • /
    • 2007
  • The geometry of satellite image captured by linear CCD sensor is different from that of frame camera image. The fact that the exterior orientation parameters for satellite image with linear CCD sensor varies from scan line by scan line, causes the difference of image geometry between frame and linear CCD sensor. Therefore, we need the epipolar geometry for linear CCD image which differs from that of frame camera image. In this paper, we proposed a method of resampling linear CCD satellite image in epipolar geometry under the assumption that image is not formed in perspective projection but in parallel projection, and the sensor model is a 2D affine sensor model based on parallel projection. For the experiment, IKONOS stereo images, which are high resolution linear CCD images, were used and tested. As results, the spatial accuracy of 2D affine sensor model is investigated and the accuracy of epipolar resampled image with RFM was presented.

  • PDF

A piecewise affine approximation of sigmoid activation functions in multi-layered perceptrons and a comparison with a quantization scheme (다중계층 퍼셉트론 내 Sigmoid 활성함수의 구간 선형 근사와 양자화 근사와의 비교)

  • 윤병문;신요안
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.56-64
    • /
    • 1998
  • Multi-layered perceptrons that are a nonlinear neural network model, have been widely used for various applications mainly thanks to good function approximation capability for nonlinear fuctions. However, for digital hardware implementation of the multi-layere perceptrons, the quantization scheme using "look-up tables (LUTs)" is commonly employed to handle nonlinear signmoid activation functions in the neworks, and thus requires large amount of storage to prevent unacceptable quantization errors. This paper is concerned with a new effective methodology for digital hardware implementation of multi-layered perceptrons, and proposes a "piecewise affine approximation" method in which input domain is divided into (small number of) sub-intervals and nonlinear sigmoid function is linearly approximated within each sub-interval. Using the proposed method, we develop an expression and an error backpropagation type learning algorithm for a multi-layered perceptron, and compare the performance with the quantization method through Monte Carlo simulations on XOR problems. Simulation results show that, in terms of learning convergece, the proposed method with a small number of sub-intervals significantly outperforms the quantization method with a very large storage requirement. We expect from these results that the proposed method can be utilized in digital system implementation to significantly reduce the storage requirement, quantization error, and learning time of the quantization method.quantization method.

  • PDF

Perception and action: Approach to convergence on embodied cognition (지각과 행위: 체화된 인지와의 융복합적 접근)

  • Lee, Young-Lim
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.555-564
    • /
    • 2016
  • Space perception is generally treated as a problem relevant to the ability to recognize objects. Alternatively, the data from shape perception studies contributes to discussions about the geometry of visual space. This geometry is generally acknowledged not to be Euclidian, but instead, elliptical, hyperbolic or affine, which is to say, something that admits the distortions found in so many shape perception studies. The purpose of this review article is to understand perceived shape and the geometry of visual space in the context of visually guided action. Thus, two prominent approaches that explain the relation between perception and action were compared. It is important to understand the fundamental information of how human perceive visual space and perform visually guided action for the convergence on embodied cognition, and further on artificial intelligence researches.

3D Mesh Watermarking Using CEGI (CEGI를 이용한 3D 메쉬 워터마킹)

  • 이석환;김태수;김승진;권기룡;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.472-484
    • /
    • 2004
  • We proposed 3D mesh watermarking algorithm using CEGI distribution. In the proposed algorithm, we divide a 3D mesh of VRML data into 6 patches using distance measure and embed the same watermark bits into the normal vector direction of meshes that mapped into the cells of each patch that have the large magnitude of complex weight of CEGI. The watermark can be extracted based on the known center point of each patch and order information of cell. In an attacked model by affine transformation, we accomplish the realignment process before the extraction of the watermark. Experiment results exhibited the proposed algorithm is robust by extracting watermark bit for geometrical and topological deformed models.

3D Mesh Model Watermarking Based on Projection

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1572-1580
    • /
    • 2005
  • The common requirements for watermarking are usually invisibility, robustness, and capacity. We proposed the watermarking for 3D mesh model based on projection onto convex sets for invisibility and robustness among requirements. As such, a 3D mesh model is projected alternatively onto two convex sets until it converge a point. The robustness convex set is designed to be able to embed watermark into the distance distribution of vertices. The invisibility convex set is designed for the watermark to be invisible based on the limit range of vertex movement. The watermark can be extracted using the decision values and index that the watermark was embedded with. Experimental results verify that the watermarked mesh model has both robustness against mesh simplification, cropping, affine transformations, and vertex randomization and invisibility.

  • PDF

Model-based velocity measurement using image processing

  • Ohba, Kohtaro;Ishihara, Tadashi;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1027-1031
    • /
    • 1990
  • In this paper, we propose a model-based method of estimating the velocity of a moving object from a series of images. The proposed method utilizes Kalman filtering technique. Assuming that the motion is described by an affine transformation, we construct a discrete-time state variable model of the motion based on the dynamic motion imagery modeling technique proposed by Schalkoff. Using this state variable model, we derive a Kalman filter algorithm. Some simulation results are presented to show that the proposed Kalman filter algorithm is superior to a simple least square method without a model.

  • PDF

A fuzzy-model-based controller for a helicopter system with 2 degree-of-freedom in motion (2 자유도 헬리콥터 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1949-1951
    • /
    • 2001
  • This paper deals with the control of a nonlinear experimental helicopter system by using the fuzzy-model-based control approach. The fuzzy model of the experimental helicopter system is constructed from the original nonlinear dynamic equations in the form of an affine Takagi-Sugeno (TS) fuzzy system. In order to design a feasible switching-type fuzzy-model-based controller, the TS fuzzy system is converted to a set of uncertain linear systems, which is used as a basic framework to synthesize the fuzzy-model-based controller.

  • PDF