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Abstract

In this paper, we propose a model-based method of
estimating the velocity of a moving object from a series
of images. The proposed method utilizes Kalman filter-
ing technique. Assuming that the motion is described
by an afline transformation, we construct a discrete-
time state variable model of the motion based on the
dynamic motion imagery modeling technique proposed
by Schalkoff. Using this state variable model, we de-
rive a Kalman filter algorithm. Some simulation results
are presented to show that the proposed Kalman filter
algorithm is superior to a simple least square method
without a model.

1. Introduction

Recently, several methods have been proposed to es-
timate the velocity of a moving object from a series of
images [1] [2] [3]. Using these methods, we can mea-
sure the velocities of numerous points at the same time
without special sensors. These methods have been used
in several fields especially in flow visualization and mo-
tion analysis. However, most of the existing methods
are susceptible to observation noise and require much
computation time because no model for the motion is
incorporated in the estimation algorithms.

In this paper, we propose a method of estimating the
velocity utilizing a model of the motion. The proposed
model-based estimation utilizes Kalman filter technique
(4]. To derive a Kalman filter algorithm, we construct a
discrete-time state variable model of the motion based
on the dynamic motion imagery modeling technique pro-
posed by Schalkoff [31. This modeling technique de-
scribes the motion as a distributed parameter system.
Assuming that the motion is described by an affine
transformation, we can obtain simple relationship be-
tween the parameters in the affine transformation and
the derivatives of the image intensity with respect to
the location and time. This relationship can be used as
a model of the observation process on the assumption
that the derivatives are obtained by difference approx-
imation. As a dynamic model of a signal to be esti-
mated, we introduce a stochastic model for the variation
of the parameters in the affine transformation. Based
on this modeling of the image sequence, we can derive
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a Kalman filter algorithm to estimate the parameters in
the affine transformation. We present some simulation
results comparing the performance of the proposed algo-
rithin with that of a simple least square method without
a model. For a rigid object, we estimate translational
and rotational motions with constant and time-varying
rates. The results show that the proposed Kalman filter
algorithm is superior to the least square method.

2. Modeling of Image Sequence

To utilize a Kalman filter algorithm, we must con-
struct a state variable model consisting of a dynamical
mode! for a signal to be estimated and a model for an
observation process. As a preliminary of constructing
the discrete-time state variable model, we derive a fun-
damental equation based on the dynamic imagery mod-
eling proposed by Schalkoff {3]. First, we briefly review
Schalkoff’s modeling which describes the dynamic be-
havior of an image as a distributed parameter system
(DPS).

We consider a 2D image of a moving object. Let
f(X,t) denote the image intensity of the location
X(z,y) at time t as a distributed parameter system.
We assume that the image intensity of the moving ob-
ject does not depend on time . Therefore, the image in-
tensity of the location X(z,y) at time ¢ is equal to that
of a location Xo(zo,y0) at the initial time to as shown
in Fig.1. Let £(X,t,¢5) denote a time-varying geometric
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Figure 1: Time-varying spatial image.



transformation satisfying

fX,1) = f(Xo,to)

f(f(X,t,to),to). (1)

We assume that £(X,¢,%5) is an affine transformation
expressed as

E(X,i,to) _—‘A(t,to)X'l'B(t,to), (2)

where A is a 2 x 2 matrix consisting of rotational and
translational parameters of the image, and B is 2 x 1
vector denoting translation. A wide class of image mo-
tions can be described by the affine trans{formation. We
assume that the parameters contained in the matrices
A and B in (2) are unknown.

Taking the partial derivatives of (1) with respect to
the location X and time t, we get

Af(X,t) _ AFX, )T (X k)
ot 8X I t ’ ©)

where J, is time-varying Jacobian of transform function
&. Using (2), the equation (3) can be written as
of(X,t) _of(X,)" i, —1f

= ’ ATTAX + A7'B 4

=0 A LW

where A and B denote the partial derivatives of A and

B with respect to ¢, respectively. This is a model of the
image as a distributed parameter system.

For simplicity, we define the following matrices.

).

an ai

ax

A = A“A:(

an

B = A—léz(Igl). (5)
2
Using (5), we can rewrite (4) as
Gy
a2
fi= ( zf, yf'z mfy yfy fe fy ) gz; 3 (6)
by
by

where f;, f, and f; denote the partial derivatives of the
image intensity f with respect to z, y and ¢, respectively.
In principle, the derivatives f,, f, and f; are obtainable
from the image data. For actual image data, the partial
derivatives f, and f, are obtained from the difference of
image intensities and f, is obtained from the difference
at the same point in two consecutive images by difference
approximation.

We use the relation (6) as a fundamental relation
to estimate the vector (&yy, @12, 821, @22, by, b2 ) from the
image data. We set an n x n pixels window in the
image plane and assume that the parameter vector
(@11, @12, 821, G2, b1, b2 ) is constant within the window.
More than six points in the window are required to de-
termine the unknown parameters. Then, we can express
the simultaneous equation as

Yt = Htgty (7)
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where
_ _ N _ s+ AT
6, = (au dip 8y @ b bz) )
T
Yo = (£ £ - ), (8)
fy W 2y Yy ff O f
P T N A
t= . . . .

A A A
and the subscript denotes the sampling time.
As a by-product, we show that, for the translational
motion, the equation (7) reduced to a fundamental equa-
tion derived by a gradient-based method [2]. For the
translational case, the transformation function £ is writ-

ten as
f(th)tO) :X+B(tvt0) (9)

For the transformation (9), the equation (4) is reduced
to

df(X,t) é)f(X,t)TB
o 8x '

(10)

Denoting B = [b, b,)7, we can write the equation (10)

as .
b
fo=(fs f,,)(bi)- (11)
For this motion, the relation (7) is reduced to
7 2Ry
I I IECR S ( o ) . (12)
: : : b2
e T

which is equivalent to the relation used in [2].

3. Kalman Filter Algorithm

We can solve the equation (7) by a least square
method. The least square estimate is given by

6= (HTH)H]Y,, (13)
where H; and Y; are given in (8). It should be noted
that this estimate is instantaneous in the sense that it
does not depend on the whole past data although two
consecutive images are required to calculate the time
derivative f,. Therefore this estimate does not utilize
all the available data as well as a model for the param-
eter variation. To use the past data and incorporate a
model for the parameter variation, we give a Kalman
filter algorithm for the estimation of the unknown pa-
rameter §,. Using the Kalman filter algorithm, we can
also incorporate a priori information about the obser-
vation noise. The sequential least square algorithm can
be regarded as a special case of the Kalman filter algo-
rithm.

We assume that the variation of the parameter 4 is
modeled by a linear stochastic difference equation

Fb,+ W, (14)

l9H~1 =



W, is a zero-mean white noise sequence with a known
covariance matrix §,. The transition matrix F; and the
covariance matrix of @, in (14) are determined by a pri-
ori information about the variation of the parameters.

Adding an observation noise to the equation (7), we
obtain the observation equation

Y, = Hb+V, (15)

where the observation noise V; is a zero-mean white
noise sequence with a known covariance matrix R;. For
the model of the motion described by the state variable
model given by (14) and (15), we can obtain the follow-
ing Kalman filter algorithm to estimate the parameter
b;.

ét+1/t = Ftét/h
Bepr = elt/t—ly +Ah (Yt - Htgt/t—l) )
i T
K, = Py HY, (HPyo HY + R,

Fope = FzP:/chT + Q:,

FPrye Prjeoy — KeHPryproa. (16)

In the above algorithm, K, is the Kalman gain matrix,
and P is the covariance matrix of the estimation error.
The subscript ¢ + 1/t denotes the estimate at time ¢ + 1
based on the data available at time ¢.

The conventional sequential least square algorithm
is obtained by setting F, = I and @, = 0. However,
this choice cannot be recommended for the time-varying
parameters. An ad hoc method to track a slowly varying
parameter is to set F, = [ and to choose sufficiently
small Q. A

Once the state estimate 6., is calculated by the
algorithm, then the estimates of the motion parameters
in (2) are easily obtained from (5). For the translational
motion, the matrix A is identity and B = B in (2).
Then we can calculate the state value by (5). For the
rotational motion centered in the window, the matrix B
is zero and A is described as

-

where w is rotation angle in one sampling time. Using
(5), we can calculate the rotation angle w as

w = Vet A.

i

—sinw
cosw

cosw
sinw

(17)

(18)

4. Simulation Results

In this section, we give some simulation results to
show the effectiveness of proposed algorithm. We con-
sider a 2D image with the intensity

F(X,t) = maz x 0.25 x {sin(?—;—z—) + sin(g%—y-) + 2} ,

(19)
where maz denotes the maximum intensity of this im-
age, and T denotes the time cycle of image intensity as
shown in Figure 2. We set an observation point and a
window around the point on the image plane. Then we
translate and rotate this image around the window at
constant rate.
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Figure 3: The window in image plane.

In actual image processing, analog image data is dig-
itized by an A/D converter. In our simulation, we set
maz in (19) as 63 or 255, and the intensity is quan-
tized into 64 or 256 grades ( 2% or 2% bits). respectively.
The number of grades depends on the accuracy ot A/D
converter. The quantization the image data may cause
some crror in the estimation result.

To correct the estimation error caused by the quan-
tization data, it is reasonable to average the quantized
data fi, fi, f, in the window. Then an m x m set of the
windows consisting of n x n pixels is placed on the image
as shown in Fig.3. In ecach window, the data fi, f., f,
are averaged. We calculate the estimate using the m xm
set of averaged data in cach window instead of the quan-
tized data.

4.1. Least Square Estimation

The least square method is the simplest one to solve
the equation like (7) or (12). We can get an estimate by
calculating (13). In this method, the estimate depends
on the image and location data at each time but does not
utilize the whole data and a model for the the param-
eter variation. As is pointed out before, this method is
equivalent to the gradient-based method proposed in [2].
To compare the estimation result with Kalman filter al-
gorithm, we perform some simulations for translational
motion.

Figure 4(a) shows the estimation result for the image
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Figure 4: The estimation result by the least
square method (m=1,n=7).

data without quantization, where the movement of ob-
ject is translation (b, = 2 [pizel/t], by = 1 [pizel/t]), the
window size is n = 7, the number of windows is m =1,
and T' = 50 and maz = 63 in equation (19). This unit
{pizel/t] denotes the moving pitch of pixel in the sam-
pling time of serial images. We use one window without
averaging of the data. The axial line denotes the esti-
mation result and horizontal line denotes the iteration
number of estimation.

The estimation resnlt shows an oscillation around the
true value to be estimated. It is cansed by the smallness
of the derivatives (f;, f,) in the image dala around the
top or bottom of the image intensity distribution curve
(19). In other words, we can not estimate the motion
parameter by the least square method at the point where
the gradient of intensity is «mall. This drawback of the
least square method has already been pointed out in [2].

The result for a (uantized data is shown in Fig.4(b).
The estimates are very sensitive to the image data. This
is because the least square method provides only an in-
stantaneous estimate.

4.2, Kalman Filter Estimation

We give simulation results for the Kalman filter algo-
rithm. In thix simulation, we set F; = I in {14) because
we move the simulation image data at constant rate. In
the equation (16), we set each condition as follows

9‘0/4 =
Py =

i
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Figure 5: The estimation result by the Kahnan

filter algorithm (m=1,n=7).

il

E[W, W]
E[V, V]

Qt:
R, =

I,
re, 1.

i

(20)

Then éo/—1 and Fy/_; denote the initial condition for
the estimation. Considering of the observation noise
covariance caused by rounded data in our simulation,
we set «, = 0.25 in our simulation. The coeflicients
a, and o, are determined by trail and error method as
ap = ag = 0.25.

Figure 5 shows the estimation result without the
quantization corresponding to Fig.4. We set the situ-
ation of estimation the samne as previous one. Then tiic
estimation result is calculated by (16) with (12). The
estimation result shows an oscillation around the real
value the same as the previous resuli. But remarkable
reduction of the effect of the quantization is achieved
compared with the least square method in Fig.4(b).

Furthermore, we put an m x m set of windows on the
image to reduce the estimation error. Therefore the data
is averaged in each n x n window. The r sult form =7
and n = 7 is shown in Figure 6. This cstimation result
is calculated by (16) with (7). In this result, we use
the image data that has 256 grades of the intensity and
time cycle of intensity is 50. Figures (a) and (b) show
results for a translational case (by = 2 [przel/t], b, =
1 [pizel/t]) and for a rotational case (w = 0.017 {rad. /1]).
The estimates track the true values rapidly, and do not
show large oscillation around the true value. This result
is clearly better than those without averaging given in
Fig.5.
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Figure 6: The estimation result by the Kalman
filter algorithm (m=7,n=7).
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Figure 7: The estimation result for the moving
parameter (m=7,n=7).

In the above simulation, we assume that the motion
parameter is constant. The proposed algorithm can be
applied for time varying motion parameters if they vary
slowly compared with the width of the window. Figure
7 shows a simulation result for sinusoidal-like parameter
variations

. 2mk
bl = 5XSln('i-6'6'),
2rk
by = 'chos(—l—o—a), (21)

where k£ denotes the iteration number. The estimates
track the true value effectively. This shows that the
proposed method is useful even if the motion parameter
is not constant.

5. Conclusions

We have proposed a model-based estimation of the
motion parameters from a series of images. This method
utilizes Kalman filter algorithm which incorporates the
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model for the motion as well as various a priori infor-
mation.

The simulation results for a constant translational
motion show that the estimation results by the proposed
Kalman filter algorithm are superior to those by the in-
stantaneous least square method without a model. It is
also shown by the simulation, the propose method can
effectively be used to track slowly varying parameters.

In our future research, we plan to apply the proposed
algorithm to a real dynamic model such as water flow.
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