• Title/Summary/Keyword: affine

Search Result 605, Processing Time 0.039 seconds

Image Watermarking Based on Feature Points of Scale-Space Representation (스케일 스페이스 특징점을 이용한 영상 워터마킹)

  • Seo, Jin-S.;Yoo, Chang-D.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.367-370
    • /
    • 2005
  • This paper proposes a novel method for content-based watermarking based on feature points of an image. At each feature point, watermark is embedded after affine normalization according to the local characteristic scale and orientation. The characteristic scale is the scale at which the normalized scale-space representation of an image attains a maximum value, and the characteristic orientation is the angle of the principal axis of an image. By binding watermarking with the local characteristics of an image, resilience against affine transformations can be obtained. Experimental results show that the proposed method is robust against various image processing steps including affine transformations, cropping, filtering, and JPEG compression.

  • PDF

A study on the Image Signal Compress using SOM with Isometry (Isometry가 적용된 SOM을 이용한 영상 신호 압축에 관한 연구)

  • Chang, Hae-Ju;Kim, Sang-Hee;Park, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.358-360
    • /
    • 2004
  • The digital images contain a significant amount of redundancy and require a large amount of data for their storage and transmission. Therefore, the image compression is necessary to treat digital images efficiently. The goal of image compression is to reduce the number of bits required for their representation. The image compression can reduce the size of image data using contractive mapping of original image. Among the compression methods, the mapping is affine transformation to find the block(called range block) which is the most similar to the original image. In this paper, we applied the neural network(SOM) in encoding. In order to improve the performance of image compression, we intend to reduce the similarities and unnecesaries comparing with the originals in the codebook. In standard image coding, the affine transform is performed with eight isometries that used to approximate domain blocks to range blocks.

  • PDF

An Algorithm for a pose estimation of a robot using Scale-Invariant feature Transform

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.517-519
    • /
    • 2004
  • This paper describes an approach to estimate a robot pose with an image. The algorithm of pose estimation with an image can be broken down into three stages : extracting scale-invariant features, matching these features and calculating affine invariant. In the first step, the robot mounted mono camera captures environment image. Then feature extraction is executed in a captured image. These extracted features are recorded in a database. In the matching stage, a Random Sample Consensus(RANSAC) method is employed to match these features. After matching these features, the robot pose is estimated with positions of features by calculating affine invariant. This algorithm is implemented and demonstrated by Matlab program.

  • PDF

Time-Discretization of Non-Affine Nonlinear System with Delayed Input Using Taylor-Series

  • Park, Ji-Hyang;Chong, Kil-To;Kazantzis, Nikolaos;Parlos, Alexander G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1297-1305
    • /
    • 2004
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.

A Robust Watermarking Technique Using Affine Transform and Cross-Reference Points (어파인 변형과 교차참조점을 이용한 강인한 워터마킹 기법)

  • Lee, Hang-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.615-622
    • /
    • 2007
  • In general, Harris detector is commonly used for finding salient points in watermarking systems using feature points. Harris detector is a kind of combined comer and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. In this paper, we have used cross reference points which use not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we find cross reference points and take inverse normalization of these points. Next, we construct a group of triangles using tessellation with inversely normalized cross reference points. The watermarks are affine transformed and transformed-watermarks are embedded into not normalized image but original one. Only locations of watermarks are determined on the normalized image. Therefore, we can reduce data loss of watermark which is caused by inverse normalization. As a result, we can detect watermarks with high correlation after several digital attacks.

A New Robust Integral Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties (부정합조건 불확실성을 갖는 비선형 시스템을 위한 새로운 강인한 적분 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1173-1178
    • /
    • 2010
  • In this note, a systematic design of a new robust nonlinear integral variable structure controller based on state dependent nonlinear form is presented for the control of uncertain more affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear integral variable structure controller is presented. To be linear in the closed loop resultant dynamics and remove the reaching phase problems, the linear integral sliding surface is suggested. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear integral sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

A Robust Global Exponential Stabilization of Uncertain Affine MIMO Nonlinear Systems with Mismatched Uncertainties by Multivariable Sliding Mode Control (다변수 슬라이딩 모드 제어에 의한 부정합조건 불확실성을 갖는 다입출력 비선형 시스템의 강인그로벌 지수 안정화)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1754-1760
    • /
    • 2011
  • In this paper, a systematic design of a robust nonlinear multivariable variable structure controller based on state dependent nonlinear form is presented for the control of MIMO uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After a MIMO uncertain affine nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding diagonalized control input is proposed to satisfy the closed loop global exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

A Study on the Constrained Dispatch Scheduling Using Affine Scaling Interior Point Methdod (Affine Scaling Interior Point Method를 이용한 제약급전계획에 관한 연구)

  • Kim, Kyung-Min;Han, Seok-Man;Kim, Kang-Won;Park, Jung-Sung;Chung, Koo-Hyung;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.858-860
    • /
    • 2005
  • This paper presents an Optimal Power Flow (OPF) algorithm using Interior Point Method (IPM) to swiftly and precisely perform the five minute dispatch. This newly suggested methodology is based on Affine Scailing Interior Point Method (AS IPM), which is favorable for large-scale problems involving many constraints. It is also eligible for OPF problems in order to improve the calculation speed and the preciseness of its resultant solutions. Lastly, this paper provides a relevant case study to confirm the efficiency of the proposed methodology.

  • PDF

Optimal Power Flow Using Affine Scaling interior Point Method (Affine Scaling Interior Point Method를 이용한 최적조류계산)

  • Kim, Kyung-Min;Park, Jung-Sung;Han, Seok-Man;Chung, Koo-Hyung;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.156-158
    • /
    • 2005
  • This paper presents an Optimal Power Flow (OPF) algorithm using Interior Point Method (IPM) to swiftly and precisely perform the five minute dispatch. This newly suggested methodology is based on Affine Sealing Interior Point Method (AS IPM), which is favorable for large-scale problems involving many constraints. It is also eligible for OPF problems in order to improve the calculation speed and the preciseness of its resultant solutions. Big-M Method is also used to improve the solution stability. Finally, this paper provides a relevant case study to confirm the efficiency of the proposed methodology.

  • PDF

Determination of Epipolar Geometry for High Resolution Satellite Images

  • Noh Myoung-Jong;Cho Woosug
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.652-655
    • /
    • 2004
  • The geometry of satellite image captured by linear pushbroom scanner is different from that of frame camera image. Since the exterior orientation parameters for satellite image will vary scan line by scan line, the epipolar geometry of satellite image differs from that of frame camera image. As we know, 2D affine orientation for the epipolar image of linear pushbroom scanners system are well-established by using the collinearity equation (Testsu Ono, 1999). Also, another epipolar geometry of linear pushbroom scanner system is recently established by Habib(2002). He reported that the epipolar geometry of linear push broom satellite image is realized by parallel projection based on 2D affine models. Here, in this paper, we compared the Ono's method with Habib's method. In addition, we proposed a method that generates epipolar resampled images. For the experiment, IKONOS stereo images were used in generating epipolar images.

  • PDF