• 제목/요약/키워드: aerospace structures

검색결과 700건 처리시간 0.032초

두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향 (The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures)

  • 공승택;전민혁;김인걸;이상우
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.129-135
    • /
    • 2021
  • 본 논문에서는 필라멘트 와인딩 공정에서 발생하는 두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 좌굴하중에 미치는 영향을 확인하기 위해서 Vasiliev가 제안한 원통형 복합재 격자 구조 좌굴하중 이론식을 변형하여 섬유체적비에 따른 좌굴하중 저하를 확인하였다. 섬유체적비에 따라 격자 구조 리브의 각 층의 두께를 달리하였으며, 혼합법칙을 사용하여 각 층별로 물성치를 다르게 적용하였다. 구조물 크기, 두께, 섬유체적비 평균값을 달리한 유한요소모델에 대한 선형좌굴해석을 수행하였다. 최종적으로 이론식을 사용한 등가모델의 좌굴 하중 계산 결과와 유한요소해석 결과를 비교하여 두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 좌굴하중 저하의 원인이 될 수 있음을 확인하였다.

Development of a Point Tracking System for Measuring Structural Deformations Using Commercial Video Cameras

  • Kim, Hong-Il;Kim, Ho-Young;Park, Hyun-Jin;Han, Jae-Hung;Kim, Jun-Bum;Kim, Do-Hyung;Han, Jeong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.86-94
    • /
    • 2009
  • This paper deals with the creation of a new, low-cost point/position tracking system that can measure deformations in engineering structures with simple commercially widespread cameras. Though point tracking systems do exist today, such as Stereo Pattern Recognition (SPR) and Projection Moir$\acute{e}$ Interferometry (PMI) systems, they are far too costly to use to analyze small, simple structures because complex optical components such as large flashes, high-resolution cameras and data acquisition systems with several computers are required. We developed a point tracking system using commercial cameras. This system used IR LEDs and commercial IR CCD cameras to minimize the interference posed by other extraneous light sources. The main algorithm used for this system is an optical point tracking algorithm, which is composed of the point extraction algorithm and the point matching algorithm for 3-D motion estimation. a series of verification tests were performed. Then, the developed point tracking system was applied to measure deformations of an acrylic plate under a mechanical load. The measured deformations of the acrylic plate matched well with the numerical analysis results. The results indicate that the developed point tracking system is reliable enough to measure continuous deformed shapes of various engineering structures.

콘형 복합재 격자 구조의 강성 평가를 위한 Subelement의 압축 시험 및 후프 링의 인장 시험 (Compression Test of Subelement and Tension Test of Hoop Ring for Stiffness Evaluation of Conical Composite Lattice Structures)

  • 전민혁;공승택;노해리;김인걸;이상우
    • Composites Research
    • /
    • 제33권3호
    • /
    • pp.169-175
    • /
    • 2020
  • 콘형 복합재 격자 구조체의 강성 평가를 위한 두 종류의 시편 단위 압축 및 인장 시험을 수행하였으며 유한요소해석 결과와 비교하였다. 구조체는 높이별로 반경이 변화하는 콘형이므로 단순 압축 및 인장 시험이 어려우므로 시험 수행이 가능한 형태의 시편 및 지그를 제작하여 시험을 수행하였다. 압축 시험이 가능하도록 단위 격자 구조체를 Subelement 형태로 가공하였으며, 압축 시험을 수행하여 측정된 섬유방향 압축 변형률을 유한요소해석 결과와 비교하여 헬리컬 리브의 강성을 확인하였다. 후프 리브의 강성 평가를 위해서는 구조체에서 후프 링 시편을 가공하여 인장 시험을 수행하였다. 후프 링에 인장 하중을 가하여 굽힘 변형이 크게 발생하도록 하였으며, 두께 방향 섬유체적비를 고려한 유한요소해석 결과와 비교하여 후프 리브의 강성을 확인하였다.

Efficient Dynamic Response Analysis Using Substructuring Reduction Method for Discrete Linear System with Proportional and Nonproportional Damping

  • Choi, Dong-Soo;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.85-99
    • /
    • 2008
  • The dynamic response analysis for large structures using finite element method requires a large amount of computational resources. This paper presents an efficient vibration analysis procedure by combining node-based substructuring reduction method with a response analysis scheme for structures with undamped, proportional or nonproportional damping. The iterative form of substructuring reduction scheme is derived to reduce the full eigenproblem and to calculate the dynamic responses. In calculating the time response, direct integration scheme is used because it can be applied directly to the reduced model. Especially for the non proportional damping matrix, the transformation matrices defined in the displacement space are used to reduce the system. The efficiency and the effectiveness of the present method are demonstrated through the numerical examples.

Mechanical Properties Prediction by Manufacturing Parameters for Braided Composites

  • Kim, Myungjun
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.25-31
    • /
    • 2020
  • The development of manufacturing technology for braided composites has led to farther extension of the applications in aerospace structures. Since the mechanical characteristics of braided composites are affected by various materials and manufacturing parameters, it is important to determine the parameters required to appropriately design the braided composite structures. In this study, we proposed a geometric model of RUC (repeating unit cell) for 2D braided composites, and predicted the mechanical properties according to the change of fiber volume fraction, fiber filament size, braiding angle, and gap between adjacent yarns by the yarn slicing technique and stress averaging method. Finally, we analyze the characteristics of mechanical properties according to each manufacturing parameter of the braided composite material.

무인기 정책환경과 무인기 산업의 구조 변화 (Regulatory environment and structural change of UAV industry)

  • 장태진
    • 항공우주시스템공학회지
    • /
    • 제9권3호
    • /
    • pp.17-22
    • /
    • 2015
  • The UAV industry grows rapidly and the civil UAV market which preparing the commercial services is expected to accelerate the growth. The new opportunities from the technological progress and deregulation show two kinds of organizational structure in the UAV industry. The companies from the traditional aircraft industry and the other sectors like IT industry have different organizational structures of the value chains, supply chains and the regulatory policies which related with them. And from the isomorphism theory it is predicted that those structures will change and converge to certain similar homogeneous features as the UAV industry matures. The matured form will be resulted by the new regulatory policies about the airspace, certifications and the operation rules about the UAV and the future market size and growth speed are also affected by them.

Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications

  • Antony, Sheedev;Cherouat, Abel;Montay, Guillaume
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.87-103
    • /
    • 2019
  • Recently, natural fibre composites are widely used in aerospace industries due to their good specific mechanical properties, better acoustic properties, light weight, readily availability, biodegradability, recyclability, etc. In this study, the hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure were proposed for aerospace applications. Firstly, the hemp fibre woven fabrics based honeycomb sandwich structures were manufactured and experimental mechanical tests (compressive and flexural) were performed in the laboratory. Numerical simulation was also performed and analysed to validate the proposed methodology. Different complex shaped aircraft part CAD models were created and numerical analysis was carried out in order to have a better understanding about the complex honeycomb sandwich structures.

Piezoelectric shunt damping by synchronized switching on negative capacitance and adaptive voltage sources

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.396-411
    • /
    • 2014
  • Synchronized switch damping (SSD) techniques have recently been developed for structural vibration control using piezoelectric materials. In these techniques, piezoelectric materials are bonded on the vibrating structure and shunted by a network of electrical elements. These piezoelectric materials are switched according to the amplitude of the excitation force to damp vibration. This paper presents a new SSD technique called 'synchronized switch damping on negative capacitance and adaptive voltage sources' (SSDNCAV). The technique combines the phenomenon of capacitance transient charging and electrical resonance to effectively dampen the structural vibration. Also, the problem of stability observed in the previous SSD techniques is effectively addressed by adapting the voltage on the piezoelectric patch according to the vibration amplitude of the structure. Analytical expressions of vibration attenuation at the resonance frequency are derived, and the effectiveness of this new technique is demonstrated, for the control of a resonant cantilever beam with bonded piezoelectric patches, by comparing with SSDI, SSDVenh, and SSDNC techniques. Theoretical predictions and experimental results show the remarkable vibration damping capability of SSDNCAV technique, which was better than the previous SSD techniques. The broadband vibration control capabilities of SSDNCAV technique are also demonstrated, which exceed those of previous SSD techniques.

유연 소재 기반 로봇의 강성 조절을 위한 구조 결합 기반 이중 강성 (Dual-Stiffness by Combined Structures for Rigidity-Tuning of Soft Robot)

  • 최재혁;이대영;조규진
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.263-269
    • /
    • 2017
  • Recently, soft robots using soft materials are presented. Thanks to soft materials, soft robots have flexible, highly-stretchable or adaptable features. However, due to the flexibility of soft material, it is hard for soft robots to control accurately or perform high force. To deal with these limitations, variable stiffness technology, which enables the stiffness control of structure, has been developed. In this research, a dual-stiffness structure that is actuated by the assembly of two flexible structures are presented. Each flexible structure consists of flexible film part and rigid parts placed at regular intervals. The flexibility of film between rigid parts allows each structure to move softly. On the other hand, by combining two structures rigid part of each part constrain the degrees of freedom of the other side part. And this causes the stiffness of whole structure to be increased. This paper will cover concepts, design, analysis and experiments of this structure.

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.223-246
    • /
    • 2015
  • Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.