1 |
Akatay, A., Bora, M.O., Fidan, S. and Coban, O. (2018), "Damage characterization of three point bended honeycomb sandwich structures under different temperatures with cone beam computed tomography technique", Polym. Compos., 39(1), 46-54.
DOI
|
2 |
Aktay, L., Johnson, A.F. and Holzapfel, M. (2005), "Prediction of impact damage on sandwich composite panels", Comput. Mater. Sci., 32(3-4), 252-260.
DOI
|
3 |
Aktay, L., Johnson, A.F. and Kroplin, B.H. (2008), "Numerical modelling of honeycomb core crush behavior", Eng. Fracture Mech., 75(9), 2616-2630.
DOI
|
4 |
Carus, M., Karst, S., Kauffmann, A., Hobson, J. and Bertucelli, S. (2013), "The European Hemp Industry: Cultivation, processing and applications for fibres, shivs and seeds", European Industrial Hemp Association (EIHA), Hurth (Germany). http://eiha.org/media/2014/10/13-06-european-hemp-industry.pdf.
|
5 |
Chawla, A., Mukherjee, S., Kumar, D., Nakatani, T. and Ueno, M. (2003), "Prediction of crushing behaviour of honeycomb structures", J. Crashworthiness, 8(3), 229-235.
DOI
|
6 |
Cunningham, P.R., White, R.G. and Aglietti, G.S. (2000), "The effects of various design parameters on the free vibration of doubly curved composite sandwich panels", J. Sound Vib., 230(3), 617-648.
DOI
|
7 |
Gibson, L.J. and Ashby, M.F. (1999), Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom.
|
8 |
Goldsmith, W., Wang, G.T., Li, K. and Crane, D. (1997), "Perforation of cellular sandwich plates", J. Impact Eng., 19(5-6), 361-379.
DOI
|
9 |
Abrate, S. (2005), Impact on Composite Structures, Cambridge University Press, Cambridge, United Kingdom.
|
10 |
Nguyen, M.Q., Jacombs, S.S., Thomson, R.S., Hachenberg, D. and Scott, M.L. (2005), "Simulation of impact on sandwich structures", Compos. Struct., 67(2), 217-227.
DOI
|
11 |
Paik, J.K., Thayamballi, A.K. and Kim, G.S. (1999), "The strength characteristics of aluminum honeycomb sandwich panels", Thin-walled Struct., 35(3), 205-231.
DOI
|
12 |
Petras, A. and Sutcliffe, M.P.F. (1999), "Failure mode maps for honeycomb sandwich panels", Compos. Struct., 44(4), 237-252.
DOI
|
13 |
Pickering, K.L., Efendy, M.A. and Le, T.M. (2016), "A review of recent developments in natural fibre composites and their mechanical performance", Compos. Part A Appl. Sci. Manufact., 83, 98-112.
DOI
|
14 |
Rao, S., Jayaraman, K. and Bhattacharyya, D. (2012), "Micro and macro analysis of sisal fibre composites hollow core sandwich panels", Compos. Part B Eng., 43(7), 2738-2745.
DOI
|
15 |
Stocchi, A., Colabella, L., Cisilino, A. and Alvarez, V. (2014), "Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics", Mater. Design, 55, 394-403.
DOI
|
16 |
Styles, M., Compston, P. and Kalyanasundaram, S. (2007), "The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures", Composite Struct., 80(4), 532-538.
DOI
|
17 |
Yamashita, M. and Gotoh, M. (2005), "Impact behavior of honeycomb structures with various cell specifications - Numerical simulation and experiment", J. Impact Eng., 32(1-4), 618-630.
DOI
|
18 |
Vinson, J.R. (2005), "Sandwich structures: Past, present, and future", Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Proceedings of the 7th International Conference on Sandwich Structures, Aalborg, August.
|
19 |
Wambua, P., Ivens, J. and Verpoest, I. (2003), "Natural fibres: Can they replace glass in fibre reinforced plastics?", Compos. Sci. Technol., 63(9), 1259-1264.
DOI
|
20 |
Wu, E. and Jiang, W.S. (1997), "Axial crush of metallic honeycombs", J. Impact Eng., 19(5-6), 439-456.
DOI
|
21 |
Zuhri, M.Y.M., Guan, Z.W. and Cantwell, W.J. (2014), "The mechanical properties of natural fibre based honeycomb core materials", Compos. Part B Eng., 58, 1-9.
|
22 |
Joseph, K., Thomas, S. and Pavithran, C. (1996), "Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites", Polymer, 37(23), 5139-5149.
DOI
|
23 |
Herrmann, A.S., Zahlen, P.C. and Zuardy, I. (2005), "Sandwich structures technology in commercial aviation", Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Proceedings of the 7th International Conference on Sandwich Structures, Aalborg, August.
|
24 |
Hinrichsen, J. (1999), "Airbus A3XX: Materials and technology requirements", Proceedings of the 18th European Conference on Materials for Aerospace Applications, Le Bourget, June.
|
25 |
Horrigan, D.P.W. and Aitken, R.R. (1998), "Finite element analysis of impact damaged honeycomb sandwich", 1999 LUSAS User Conference, CS503, Issue 1, Finite Element Analysis Ltd.
|
26 |
Malkapuram, R., Kumar, V. and Negi, Y.S. (2009), "Recent development in natural fiber reinforced polypropylene composites", J. Reinforced Plastics Compos., 28(10), 1169-1189.
DOI
|
27 |
Maniruzzaman, M., Rahman, M.A., Gafur, M.A., Fabritius, H. and Raabe, D. (2012), "Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers", J. Compos. Mater., 46(1), 79-90.
DOI
|
28 |
Matta, V., Kumar, J.S., Venkataraviteja, D. and Reddy, G.B.K. (2017), "Flexural behavior of aluminum honeycomb core sandwich structure", IOP Conference Series: Materials Science and Engineering, 197(1), IOP Publishing, Bristol, United Kingdom.
|
29 |
Mokhtari, M., Shahravi, M. and Zabihpoor, M. (2018), "Development of dynamic behavior of the novel composite T-joints: Numerical and experimental", Adv. Aircraft Spacecraft Sci., 5(3), 385-400.
DOI
|
30 |
Meo, M., Morris, A.J., Vignjevic, R. and Marengo, G. (2003), "Numerical simulations of low-velocity impact on an aircraft sandwich panel", Compos. Struct., 62(3-4), 353-360.
DOI
|