DOI QR코드

DOI QR Code

Compression Test of Subelement and Tension Test of Hoop Ring for Stiffness Evaluation of Conical Composite Lattice Structures

콘형 복합재 격자 구조의 강성 평가를 위한 Subelement의 압축 시험 및 후프 링의 인장 시험

  • Jeon, Min-Hyeok (Department of Aerospace Engineering, Chungnam National University) ;
  • Kong, Seung-Taek (Department of Aerospace Engineering, Chungnam National University) ;
  • No, Hae-Ri (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Lee, Sang-Woo (Defense and Aerospace Division, Hankuk Fiber Group)
  • Received : 2020.04.08
  • Accepted : 2020.06.17
  • Published : 2020.06.30

Abstract

The compression and tension test were performed to evaluate the stiffnesses of the conical composite lattice structures and results of test were compared with finite element analysis results. Because of difficulty to perform simple tension and compression test due to conical shape, suitable specimens and jig for test were made. Subelements extracted from the structure were prepared for compression test. Compression test of subelement was performed and compressive strains in fiber direction were measured. Compressive stiffness of the helical rib was verified by finite element analysis results. For stiffness of hoop rib, hoop ring specimens were extracted from the structure. Tension test of hoop ring specimen was performed to apply bending deformation to hoop rib. Stiffness of hoop rib was verified by finite element model considering various fiber volume fraction in thickness direction.

콘형 복합재 격자 구조체의 강성 평가를 위한 두 종류의 시편 단위 압축 및 인장 시험을 수행하였으며 유한요소해석 결과와 비교하였다. 구조체는 높이별로 반경이 변화하는 콘형이므로 단순 압축 및 인장 시험이 어려우므로 시험 수행이 가능한 형태의 시편 및 지그를 제작하여 시험을 수행하였다. 압축 시험이 가능하도록 단위 격자 구조체를 Subelement 형태로 가공하였으며, 압축 시험을 수행하여 측정된 섬유방향 압축 변형률을 유한요소해석 결과와 비교하여 헬리컬 리브의 강성을 확인하였다. 후프 리브의 강성 평가를 위해서는 구조체에서 후프 링 시편을 가공하여 인장 시험을 수행하였다. 후프 링에 인장 하중을 가하여 굽힘 변형이 크게 발생하도록 하였으며, 두께 방향 섬유체적비를 고려한 유한요소해석 결과와 비교하여 후프 리브의 강성을 확인하였다.

Keywords

References

  1. Vasiliev, V.V., Barynin, V.A., and Razin, A.F., "Anisogrid Compoiste Lattice Structures - Development and Aerospace Applications," Composite Structures, Vol. 94, Iss. 3, 2012, pp. 1117-1127. https://doi.org/10.1016/j.compstruct.2011.10.023
  2. Terashima, K., Kamita, T., Kimura, G., Uzawa, T., Aoki, T., and Yokozeki, T., "Experimental and Analytical Study of Composite Lattice Structure for Future Japanese Launchers," Proceeding of the 19th International Conference on Composite Materials, Montreal, Canada, 2013, pp. 5373-5382.
  3. Aoki, T., Yamazaki, H., Yokozeki, T., Terashima, K., and Kamita, T., "Design Constraints of Composite Lattice Cylinders for Aerospace Appllications," Proceeding of the 19th International Conference on Composite Materials, Montreal, Canada, 2013.
  4. Jeon, M.H., Kang, M.S., Kim, I.G., Kim, M.G., Go, E.S., and Lee, S.W., "Compression and Bending Test for the Stiffness of Composite Lattice Subelement," Composites Research, Vol. 30, Iss. 6, 2017, pp. 331-337. https://doi.org/10.7234/COMPOSRES.2017.30.6.331
  5. Kang, M.S., Jeon, M.H., Kim, I.G., Kim, M.G., Go, E.S., and Lee, S.W., "The Effect of the Fiber Volume Fraction Nonuniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures," Composites Research, Vol. 31, Iss. 4, 2018, pp. 161-170.
  6. Im, J.M., Kang, S.G., Shin, K.B., and Lee, S.W., "Study on Evaluation Method of Structural Integrity for Cone-Type Composite Lattice Structures with Hexagonal Cell," Composites Research, Vol. 31, Iss. 4, 2018, pp. 156-160.
  7. Vasiliev, V.V., Razin, A.F., Totaro, G., and De Nicola, F., "Anisogrid Conical Adapters for Commercial Space Application," AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2005.
  8. Razin, A.F., and Vasiliev, V.V., "Development of Composite Anisogrid Spacecraft Attach Fitting," 11th European Conference on Composite Materials, Rhodos, Greece, 2004.
  9. Totaro, G., "Flexural, Torsional, and Axial Global Stiffness Properties of Anisogrid Lattice Conical Shells in Composite Material," Composite Structures, Vol. 153, 2016, pp. 738-745. https://doi.org/10.1016/j.compstruct.2016.06.072
  10. Totaro, G., and Gurdal, Z., "Optimal Design of Composite Lattice Shell Structures for Aerospace Applications," Aerospace Science and Technology, Vol. 13, Iss. 4-5, 2009, pp. 157-164. https://doi.org/10.1016/j.ast.2008.09.001