• 제목/요약/키워드: aerospace structures

검색결과 700건 처리시간 0.031초

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.

Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle

  • Chung, Min-Ho;Lee, Hee-Jun;Kang, Yeon-Cheol;Lim, Woo-Bin;Kim, Jeong-Ho;Cho, Jin-Yeon;Byun, Wan-Il;Kim, Seung-Jo;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.183-198
    • /
    • 2012
  • Dynamic buckling, also known as parametric resonance, is one of the dynamic instability phenomena which may lead to catastrophic failure of structures. It occurs when compressive dynamic loading is applied to the structures. Therefore it is essential to establish a reliable procedure to test and evaluate the dynamic buckling behaviors of structures, especially when the structure is designed to be utilized in compressive dynamic loading environment, such as supercavitating underwater vehicle. In the line of thought, a dynamic buckling test system is designed in this work. Using the test system, dynamic buckling tests including beam, plate, and stiffened plate are carried out, and the dynamic buckling characteristics of considered structures are investigated experimentally as well as theoretically and numerically.

Fiber optic shape sensor system for a morphing wing trailing edge

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Dimino, Ignazio;Bettini, Paolo
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.441-450
    • /
    • 2017
  • The objective of this work is to present a conceptual design and the modelling of a distributed sensor system based on fiber optic devices (Fiber Bragg Grating, FBG), aimed at measuring span-wise and chord-wise variations of an adaptive (morphing) trailing edge. The network is made of two different integrated solutions for revealing deformations of the reference morphing structure. Strains are confined to typical values along the span (length) but they are expected to overcome standard ranges along the chord (width), up to almost 10%. In this case, suitable architectures may introduce proper modulations to keep the measured deformation low while preserving the information content. In the current paper, the designed monitoring system combines the use of a span-wise fiber reinforced patch with a chord-wise sliding beam. The two elements make up a closed grid, allowing the reconstruction of the complete deformed shape under the acceptable assumption that the transformation refers to regular geometry variations. Herein, the design logic and some integration issues are reported. Preliminary experimental test results are finally presented.

Buckling Characteristics of Skin-Stringer Composite Stiffened Panel

  • Noh, Ji-Sub;Ghim, Yeong-Taek;Shin, Joon-Hyung;Kwon, Bo-Seong;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • 항공우주시스템공학회지
    • /
    • 제14권6호
    • /
    • pp.68-73
    • /
    • 2020
  • Skin-stringer structures are widely used in aircrafts due to their advantage of minimizing structural weight while maintaining load carrying capacity. However, buckling load can cause serious damage to these structures. Therefore, the buckling characteristics of skin-stringer structures should be carefully considered during the design phase to ensure structural soundness. In this study, finite element method was applied to predict the buckling characteristics of stiffened panels. In terms of the failure mode, finite element analysis showed a symmetrical buckling mode, whereas an asymmetrical mode was determined by experimentation. The numerical results were obtained and compared to the experimental data, showing a difference of 9.3% with regard to the buckling loads.

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures

  • Sung, Woo-Yong;Kim, Wal-Jun;Lee, Seung-Min;Lee, Ho-Young;Kim, Yong-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1459-1461
    • /
    • 2005
  • Carbon nanotube -copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field of the structures was about 3.0 $V/{\mu}m$ at the current density of 0.1 ${\mu}A/cm^2$. We observed relatively uniform emission characteristics as well as stable emission currents. CNT-Cu composite plating method is efficient and it has no intrinsic limit on the plating area. Moreover, it gives strong adhesion between emitters and an electrode. The refore, we expect that CNT-Cu composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

  • PDF

Numerical Analysis of SMA Hybrid Composite Plate Subjected to Low-Velocity Impact

  • Kim, Eun-Ho;Roh, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.76-81
    • /
    • 2007
  • The fiber reinforced laminated composite structures are very susceptible to be damaged when they are impacted by foreign objects. To increase the impact resistance of the laminated composite structures, shape memory alloy(SMA) thin film is embedded in the structure. For the numerical impact analysis of SMA hybrid composite structures, SMA modeling tool is developed to consider pseudoelastic effect of SMAs. Moreover, the damage analysis is considered using failure criteria and a simple damage model for reasonable impact analysis. The numerical results are verified with the experimental ones. Impact analyses for composite plate with pre-strained SMAs are numerically performed and the damage areas are investigated.

2단계 모세관 리소그라피 기술을 이용한 마이크로/나노 병합구조 공정 기술 및 수학적 모델을 통한 표면 특성 분석 (Fabrication of polymer hierarchical structures by two-step temperature-directed capillary)

  • 서갑양;정훈의;이성훈;김재관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.272-274
    • /
    • 2005
  • A simple method for fabricating micro/nanoscale hierarchical structures is presented using a two-step temperature-directed capillary molding technique. This lithographic method involves a sequential application of molding process in which a uniform polymer-coated surface is molded with a patterned mold by means of capillary force above the glass transition temperature of the polymer. Using this approach, multiscale hierarchical structures for biomimetic functional surfaces can be fabricated with precise control over geometrical parameters and the wettability of a solid surface can be designed in a controllable manner.

  • PDF

Active and Morphing Aerospace Structures-A Synthesis between Advanced Materials, Structures and Mechanisms

  • Baier, Horst;Datashvili, Leri
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.225-240
    • /
    • 2011
  • Active and shape morphing aerospace structures are discussed with a focus on activities aimed at practical implementation. In active structures applications range from dynamic load alleviation in aircraft and spacecraft up to static and dynamic shape control. In contrast, shape morphing means strong shape variation according to different mission status and needs, aiming to enhance functionality and performance over wide flight and mission regimes. The interaction of required flexible materials with the morphing structure and the actuating mechanisms is specifically addressed together with approaches in design and simulation.

복합재 격자 구조의 강성 평가를 위한 Subelement의 압축, 굽힘 시험 (Compression and Bending Test for the Stiffness of Composite Lattice Subelement)

  • 전민혁;강민송;김인걸;김문국;고은수;이상우
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.331-337
    • /
    • 2017
  • 복합재 격자 구조물은 무게가 가볍고 비강성, 비강도가 높다는 장점이 있으며 주로 압축 하중이 작용하는 발사체구조에 적용된다. 그러나 필라멘트 와인딩 기법으로 제작되므로 섬유가 겹쳐지는 부분에서 기공과 결함이 발생하게 된다. 설계 하중 도출을 위한 해석 모델 검증을 위해 구조물의 강성, 강도 확인이 필요하지만 Full scale 시험의 경우 시간, 공간상의 제약이 따르며 구조물의 형상이 복잡하므로 시험에 어려움이 많다. 따라서 강성 확인을 위한 Subelement 단위의 시험법이 필요하다. 본 논문에서는 복합재 격자 구조물을 단위격자구조로 가공하였으며 각각 압축, 굽힘 시험을 수행하여 나선 리브, 원주 리브의 강성을 확인하였다. 휘임, 비틀림 형상을 가진 원통형 복합재 격자 구조물의 강성 평가를 위한 압축, 굽힘 시험법을 제안하였으며 유한요소해석을 수행하여 시험결과와 비교하였다.

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao;Ji, Hongli
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.266-284
    • /
    • 2010
  • Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.