• Title/Summary/Keyword: aerodynamic drag

Search Result 506, Processing Time 0.027 seconds

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 2 : Pitching Amplitude (비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 2 : 피치 진동운동 진폭)

  • Seunghwan Ji;Cheoulheui Han
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.63-71
    • /
    • 2023
  • In the present study, the effect of pitch amplitude on the unsteady aerodynamics of a NACA 0012 airfoil is numerically investigated. When the frequency ratio is equal to 1.0, airfoil pitching with 20 and 30 degrees of pitch amplitude shows almost small lift generation, but the lift is significantly increased in case of 10-degree pitch amplitude. When the frequency is 0.5, the lift coefficients have large values, and the lift increases with a decrease in pitch amplitude. When the frequency ratio is 1.0, the airfoil generates large thrust. The thrust decreases as the pitch amplitude decreases. When the frequency ratio is 0.5, drag is generated for the 30-degree pitch amplitude, but the thrust is generated for 10-degree pitch amplitude. In future, the effect of heave amplitude on the unsteady aerodynamics of the airfoil will be studied.

Capsule Train Dynamic Model Development and Driving Characteristic Analysis Considering the Superconductor Electrodynamic Suspension (초전도 유도 반발식 부상특성을 고려한 캡슐트레인 동특성 해석 모델 구축 및 주행 특성 분석)

  • Lee, Jin-Ho;Lim, Jungyoul;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.38-45
    • /
    • 2020
  • A magnetically levitating capsule train, which runs inside the sub-vacuum tube, can reach ultra-fast speeds by dramatically reducing the aerodynamic drag and friction. The capsule train uses the superconductor electrodynamic suspension (SC-EDS) method for levitation. The SC-EDS method has advantages, such as a large levitation gap and free of gap control, which could reduce the infra-construction cost. On the other hand, disadvantages, such as the large variation of the levitation-guidance gap and small damping characteristics in levitation-guidance force, could degrade the running stability and ride comfort of the capsule train. In this study, a dynamic analytical model of a capsule train based on the SC-EDS was developed to analyze the running dynamic characteristics. First, as important factors in the capsule train dynamics, the levitation and guidance stiffness in the SC-EDS system were derived, which depend non-linearly on the velocity and gap variation. A 3D dynamic analysis model for capsule trains was developed based on the derived stiffness. Through the developed model, the effects of the different running speeds on the ride comfort were analyzed. The effects of a disturbance from infrastructure, such as the curve radius, tube sag, and connection joint difference, on the running stability of the capsule train, were also analyzed.

Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio (2중 유로형 전단 동축 분사기의 기체 분사율에 따른 유동 및 입도분포)

  • Lee, Inchul;Kim, Dohun;Koo, Jaye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.675-682
    • /
    • 2013
  • To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the SMD decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the SMD shows the similar distribution.

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

A Study on the Shapes of Twin Curvy Sail for Unmanned Sail Drone (무인세일드론의 트윈커브세일 형상에 관한 연구)

  • Ryu, In-Ho;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1059-1066
    • /
    • 2021
  • In Korea, the importance of marine activities is great, and automatic weather observation facilities are operating on land to investigate abnormal weather phenomena caused by industrialization; however, the number of facilities at sea is insufficient. Marine survey ships are operated to establish marine safety information, but there are many places where marine survey ships are difficult to access and operating costs are high. Therefore, a small, unmanned vessel capable of marine surveys must be developed. The sail has a significant impact on the sailing performance, so much research has been conducted. In this study, the camber effect, which is a design variable of the twin curvy sail known to have higher aerodynamic performance than existing airfoil shapes, was investigated. Flow analysis results for five cases with different camber sizes show that the lift coefficient is highest when the camber size is 9%. Curvy twin sails had the highest lift coefficient at an angle of attack of 23° because of the interaction of the port and starboard sails. The port sail had the highest lift coef icient at an angle of attack of 20°, and the starboard sail had the lowest lift coef icient at an angle of attack of 15°. In addition, the curvy twin sail had a higher lift coefficient than NACA 0018 at all angles of attack.