DOI QR코드

DOI QR Code

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 2 : Pitching Amplitude

비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 2 : 피치 진동운동 진폭

  • Received : 2023.10.04
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

In the present study, the effect of pitch amplitude on the unsteady aerodynamics of a NACA 0012 airfoil is numerically investigated. When the frequency ratio is equal to 1.0, airfoil pitching with 20 and 30 degrees of pitch amplitude shows almost small lift generation, but the lift is significantly increased in case of 10-degree pitch amplitude. When the frequency is 0.5, the lift coefficients have large values, and the lift increases with a decrease in pitch amplitude. When the frequency ratio is 1.0, the airfoil generates large thrust. The thrust decreases as the pitch amplitude decreases. When the frequency ratio is 0.5, drag is generated for the 30-degree pitch amplitude, but the thrust is generated for 10-degree pitch amplitude. In future, the effect of heave amplitude on the unsteady aerodynamics of the airfoil will be studied.

본 연구에서는 NACA 0012 에어포일을 사용하여 히브와 피치 진동운동의 주파수가 다른 경우에 대하여 피치진동운동의 진폭에 에어포일의 비정상 공력 특성에 미치는 영향을 수치적으로 연구했다. 양력계수는 주파수비가 1.0인 경우 피치진동운동의 진폭이 30°와 20°인 경우 양력계수 값이 크지 않았으나 10°인 경우 양력계수값이 크게 증가했다. 주파수비가 0.5인 경우 양력계수값은 전체적으로 주파수비가 1.0인 경우보다 큰 값을 가졌으며, 진폭이 감소할수록 양력이 크게 증가하였다. 항력계수는 주파수비가 1.0인 경우 전체적으로 추력이 크게 발생하였으며 진폭이 감소할수록 추력의 크기가 감소하였다. 주파수비가 0.5인 경우 피치진동운동의 진폭이 30°인 경우 항력이 발생하였으나 진폭이 10°인 경우 추력이 발생하였다. 향후 본 연구를 확장하여 에어포일의 히브진동운동의 진폭변화에 따른 비정상 공력 특성 변화를 연구할 계획이다.

Keywords

Acknowledgement

본 연구는 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(N0.2018R1D1A3B07050384), 그리고 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 지원을 받아 수행되었으며 관계자 여러분께 감사드립니다.

References

  1. S. P. Sane, "The aerodynamics of insect flight," Journal of Experimental Biology, Vol. 206, No. 23, 2003.
  2. J. Han, Y. Han, H. Yang, S. Lee, E. Lee, "A review of flapping mechanisms for avian-inspired flapping-wing air vehicles," Aerospace 2023, Vol. 10, No. 6, pp.1-12, 2023 https://doi.org/10.3390/aerospace10060554
  3. W. Shyy, C-k. Kang, P. Chirarattananon, S. Ravi, H. Liu, "Aerodynamics, sensing and control of insect-scale flapping-wing flight," Proceedings of the Royal Society A, Vol. 472, No. 2186, 2016.
  4. T. Weis-Fogh, "Energetics of hovering flight in hummingbirds and in drosophila." Journal of Experimental Biology, Vol. 56, No. 1, 1973.
  5. T. Weis-Fogh, "Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift-production," Journal of Experimental Biology, Vol. 59, No. 1, 1973.
  6. R. J. Cooter, P. S. Baker, "Weis-Fogh clap and fling mechanism in locusta," Nature, Vol. 269, pp. 53-54, 1977. https://doi.org/10.1038/269053a0
  7. C. P. Ellington, C. V. D. Berg, A. P. Willmott, A. L. R. Thomas, "Leading-edge vortices in insect flight," Nature, Vol. 384, pp. 626-630, 1996. https://doi.org/10.1038/384626a0
  8. J. M. Birch, M. H. Dickson, "Spanwise flow and the attachment of the leading edge vortex on insect wings," Nature, Vol. 412, pp. 729~733, 2001. https://doi.org/10.1038/35089071
  9. M. H. Dickinson, F-O. Lehmann, S. P. Sane, "Wing rotation and the aerodynamic basis of insect flight," Science, Vol. 284, No. 5422, pp. 1954-1960, 1999. https://doi.org/10.1126/science.284.5422.1954
  10. A. A. Hosseinjani, A. Ashrafizadeh, "Numerical simulation of the wake structure and thrust/lift generation of a pitching airfoil at low reynolds number via an immersed boundary method," Journal of Aerospace Technology and Management, Vol. 7, No 3. 2015.
  11. C. Gong,, J. Han, Z. Yuan, Z. Fang, G. Chen, "Numerical investigation of the effects of different parameters on the thrust performance of three dimensional flapping wings," Aerospace Science and Technology, Vol. 84, pp. 431-445, 2019. https://doi.org/10.1016/j.ast.2018.10.021
  12. M. R. Amiralaei, H. Alighanbari, S. M. Hashemi, "Flow field characteristics study of a flapping airfoil using computational fluid dynamics," Journal of Fluids and Structure, Vol. 27, No. 7, pp. 1068-1085, 2011. https://doi.org/10.1016/j.jfluidstructs.2011.06.005
  13. S. Sarkar, K. Venkatraman, "Numerical simulation of incompressible viscous flow past a heaving airfoil," International Journal for Numerical Methods in Fluids, Vol. 51, pp. 1-29, 2006. https://doi.org/10.1002/fld.1094
  14. J. A. Esfahani, E. Barati, H. R. Karbasian, "Fluid structures of flapping airfoil with elliptical motion trajectory," Computers and Fluids, Vol. 108, pp. 142-155, 2015. https://doi.org/10.1016/j.compfluid.2014.12.002
  15. S. Ji, C. Han, "Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 1 : Frequency Ratio," Journal of Aerospace System Engineering, 2023(Submitted).
  16. P. Tisovska, "Description of the overset mesh approach in ESI version of OpenFOAM," In Proceedings of CFD with OpenSource Software, 2019.
  17. S. Volkner, J. Brunswing, T. Rung, "Analysis of non-conservative interpolation techniques in overset grid finite-volume methods," Computers and Fluids, Vol. 148, No. 22, pp. 39-55, 2017. https://doi.org/10.1016/j.compfluid.2017.02.010
  18. S. Yang, C. Liu, J. Wu, "Effect of motion trajectory on the aerodynamic performance of a flapping airfoil," Journal of Fluids and Structures, Vol. 75, pp. 213-232, 2017. https://doi.org/10.1016/j.jfluidstructs.2017.08.009