• Title/Summary/Keyword: aerobic plate count

Search Result 88, Processing Time 0.029 seconds

A Study on the Types and Growth Patterns of Microorganisms and Quality Characteristics in Cherry Tomatoes and Head Lettuces According to Storage Period and Temperature (저장기간과 온도에 따른 신선편이 방울토마토와 양상추의 미생물 종류와 성장패턴 및 품질특성에 관한 연구)

  • Lee, Seung Yuan;Yu, Hao Yang;Choi, Dong Soo;Hur, Sun Jin
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.700-705
    • /
    • 2013
  • The purpose of this study is to investigate the quality changes and contamination of microorganisms such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in cherry tomatoes and head lettuces during the storage of different temperatures and periods. This study determines the pH levels, color changes and the growth patterns of microorganisms in cherry tomatoes and head lettuces during storage of 14 days at $5^{\circ}C$, $10^{\circ}C$ and $15^{\circ}C$. According to the results, the pH level is being reduced with storage periods in cherry tomatoes and head lettuces. The $L^*$, $a^*$ and $b^*$ values of cherry tomatoes are decreased with storage period, whereas the $a^*$ and $b^*$ values have increased with storage of the head lettuces. With regards to the types of microorganisms, the aerobic count plate (ACP), coliform count (CC), mold and yeast are being detected when cherry tomatoes and head lettuces are stored at $5^{\circ}C$, $10^{\circ}C$ and $15^{\circ}C$, whereas the S. aureus and E. coli are not being detected at 14 days of storage. The ACP, CC and yeast of cherry tomatoes increase with storage period, whereas the mold of cherry tomatoes was decreased after 14 days of storage. For the head lettuces, APC and CC have significantly increased with storage, whereas the mold stored at $5^{\circ}C$, $10^{\circ}C$ and $15^{\circ}C$ decreased after 21 days of storage. From these studies, we can confirm that changes in quality characteristics and the types of microorganisms existed in cherry tomatoes and head lettuces during storage were the ACP, CC, mold and yeast, whereas the E. coli and S. aureus are not detected.

Effects of Small Scale Post-Harvest Facility and Hygiene Education on the Level of Microbial Safety in Korean Leeks Production (영양부추 생산농가의 소규모 수확후 처리시설 적용과 위생교육에 따른 미생물학적 안전성 향상 효과)

  • Kim, Se-Ri;Kim, Jin-Bae;Lee, Hyo-Sup;Lee, Eun-Sun;Kim, Won-Il;Ryu, Song-Hee;Ha, Jihyung;Kim, Hwang-Yong;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • The purposes of this study were to develop a small scale post-harvest facility, and consequently to evaluate the effects of applying the facility along with hygiene education on the level of microbial safety in Korean leeks production. A total of 135 samples were collected at three Korean leeks farms in Yangju, Gyeonggi province. Food safety indicators (Aerobic plate count (APC), coliform count, and Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) on/in the samples were assessed. The microbial load measured as APC with harvesting tools such as comb, chopping board, and knife, at the farms where the small scale post-harvest facility had been operated (Farms A and B) was lower than that at another farm having no post-harvest facility (Farm C) by 1.44~2.33 log CFU / $100cm^2$. Moreover, the chopping board from Farm C was observed being contaminated with B. cereus at 6.03 log CFU / $100cm^2$. The coliform counts from the samples increased by 0.57~1.89 log CFU/g after leeks was submerged in ground water for washing. E. coli was recovered from leeks, soil, and the ground water used in the washing process, while no E. coli O157:H7, Salmonella spp., and L. monocytogenes was detected. Our results indicated that the small scale post-harvest facility developed in this study as well as the hygiene education played an important role in enhancing the level of microbial food safety in the leeks production environment. However, a disinfection technique could be needed during the washing step in order to prevent a potential contamination.

Safety Evaluation of Microbiological and Aflatoxin of Traditional Dried Persimmon (곶감의 미생물 및 aflatoxin에 대한 안전성 평가)

  • Seo, Min-Kyoung;Choi, Song-Yi;Lee, Kyoung Ah;Kim, Jung-Sook;Chung, Duck-Hwa;Lee, Soo-Hyung;Park, Ki-Hwan;Kim, Won-Il;Ryu, Jae-Gee;Kim, Hwang-Yong;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.260-267
    • /
    • 2014
  • To evaluate microbiological and aflatoxin safety on traditional dried persimmon, a total of 315 samples were collected from 105 farms. The collected samples were assessed on aflatoxin and microorganisms (Aerobic plate count, coliform count, Escherichia coli, Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus). The the APC of sliced dried persimmon, dried persimmon, and semi dried persimmon were $3.93{\pm}0.96$, $2.12{\pm}0.93$, and $1.50{\pm}1.08{\log}\;CFU/g$, respectively. S. aureus was detected in 40.0% of sliced dried persimmon, 29.5% of dried persimmon, and 23.5% of semi dried persimmon. E. coli recovered from dried persimmon and semi dried persimmon was 6.6%, and 2.9%, respectively. However, E. coli O157:H7, Salmonella spp., and L. monocytogenes were not detected. According to the result of aflatoxin by ELISA and UPLC, aflatoxin was not detected in any sample. These data suggested that safety management system should be introduce to the farms producing traditional dried persimmon to enhance the safety of traditional dried persimmon.

Microbiological Quality of Raw and Cooked Foods in Middle and High School Food Service Establishments (서울시 일부 중.고등학교의 급식용 식재료 및 조리식품의 미생물학적 품질)

  • Kim, Myung-Hee;Shin, Weon-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1343-1356
    • /
    • 2008
  • The evaluation of microbiological quality for school food samples collected from 19 selected middle and high schools located in Seoul was undertaken. Eighty-nine food samples consisting of 38 non-pretreated vegetables, 13 pre-washed and cut vegetables, 9 meats and poultry, 3 fish and shellfish, 7 dried fish, and shellfish and 20 processed foods were collected. Aerobic plate count, total coliforms, and Escherichia coli (E. coli ) were detected using $Petrifilm^{TM}$, and the food-borne pathogens were screened by multiplex PCR with species-specific primer sets. Sequentially, the quantitative and confirmative test of the food-borne pathogens were carried out with the selective media and biochemical kits. The contamination of coliform counts was observed on the pre-washed vegetables ($3.4{\sim}4.3\;log\;CFU/g$) and meats ($2.2{\sim}4.3\;log\;CFU/g$). Also, the cooked foods were heavily contaminated with coliform, ranging from 1.0 to $5.5\;log\;CFU/g$. E. coli counts were found in 16 raw and cooked food samples, exceeding the microbiological standards for the guideline of safety management for school foods. Through PCR detection, B acillus cereus was detected in 32 raw and cooked foods, and quantitatively found in pre-washed carrot, radish, and pan-broiled dried shrimp and filefish ranging from $2.3{\sim}3.6\;log\;CFU/g$, respectively. E. coli O157:H7 was detected on frozen pork sample and was confirmed with API kit. Campylobacter jejuni was found in 3 ready-to-eat type vegetables. Vibrio parahaemolyticus were found in 4 pre-washed vegetables and 2 cooked foods, indicating unsatisfactory quality based upon the microbiological standards of ready-to-eat vegetables and cooked foods by Korea Food and Drug Administration. Salmonella spp. was detected in frozen chicken sample and confirmed by API kit and latex antisera agglutination.

Microbiological Safety Assessment to Secure Safety of Food Service in University (대학 내 급식소의 안전성 확보를 위한 미생물학적 안전성 평가)

  • Kim, Kyeong-Yeol;Nam, Min-Ji;Nam, Bo-Ram;Ryu, Hee-Jung;Heo, Rok-Won;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.49-58
    • /
    • 2010
  • The objectives of this study were to investigate the microbial contamination levels on food service in university and to provide the information of microbial contamination to improve food safety. A total of 288 samples were collected during summer and winter season between 2006 and 2008 from 4 food services located in the university in Western Gyeongnam and were used to detect sanitary indicator bacteria [aerobic plate count (APC), coliform, and Escherichia coli] and pathogenic bacteria (Staphylococcus aureus, Salmonella spp.). As a result, APC and coliform for hand and kitchen utensils which are used often by the employee were detected at high levels of 1.1~5.5 and 1.3~5.3 log CFU/($100\;cm^2$, hand), respectively. The contamination levels of APC and coliform in cooked foods and drinking water were 0.8~6.4 and 1.3~5.0 log CFU/(g, mL), respectively. Especially, the cooked foods showed the highest contamination for APC (2.1~6.4 log CFU/g) and coliform (1.0~5.0 log CFU/g). We think the reason that the cooked foods may be contaminated with APC and coliform on cooking process by using employee's hand and kitchen utensils. Moreover, S. aureus for hand and kitchen utensils was detected at levels of 2.8~3.0 and 2.0~2.3 log CFU/(g, hand), but Salmonella spp. was not detected. According to the above results, contamination levels of the samples were mostly decreased irrespective of summer and winter season. The results obtained indicated that it is necessary to periodic monitoring for microorganism contamination and education about personal and environmental hygiene to employee for ensuring food safety of food service in university.

Investigation of Microbial Contamination Levels of Leafy Greens and Its Distributing Conditions at Different Time - Focused on Perilla leaf and Lettuce - (시기별 엽채류의 미생물 오염도와 유통 조건 조사 - 들깻잎과 상추를 중심으로 -)

  • Kim, Won-Il;Jung, Hyang-Mi;Kim, Se-Ri;Park, Kyeong-Hun;Kim, Byung-Seok;Yun, Jong-Chul;Ryu, Kyoung-Yul
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.277-284
    • /
    • 2012
  • The objective of this study was to investigate and evaluate microbial contamination levels of leafy greens (perilla leaf and lettuce) and its distributing conditions at different seasons (Feb, May, Aug, and Nov of the year 2011) in order to provide insight into any potential health hazards associated with consumption of these commodities. Leafy greens were collected from a farm located in Geumsan, Chungnam and wholesale markets (WM) and traditional markets (TM) located in Suwon. At the same time, temperature and relative humidity fluctuations experienced by the leafy greens during distribution from the farm to the distribution center were measured by a data logger. The contamination levels of perilla leaf and lettuce were determined by analyzing total plate count. Coliform groups, Bacillus cereus, Escherichia coli, Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes and Staphylococcus aureus were determined. The contamination levels of total aerobic bacteria, coliform groups and B. cereus in both vegetables sampled during May and August found to be higher than those sampled during February and November. E. coli O157:H7, Salmonella spp., L. monocytogenes were not detected in the vegetables analyzed in this study. There were no significant trends between samples at WM and TM in the contamination levels. Relative humidity of vegetables distributed from the farm to the distribution center showed over 90% during distribution regardless of measured seasons. In the case of background microflora on leafy greens, the density was significantly increased at 20, 30 and $37^{\circ}C$ during storage of 24h. E. coli O157:H7 and B. cereus inoculated on the leaves also showed similar increases in the storage tests. The microbial contamination levels determined in this study may be used as the fundamental data for microbial risk assessment.

The Effects of Calcinated Calcium Solution Washing and Heat Treatment on the Storage Quality and Microbial Growth of Fresh-cut Broccoli (신선편이 브로콜리의 품질과 미생물 성장에 영향을 주는 소성칼슘 용액 세척 및 열처리 효과)

  • Kim, Ji Gang;Nimitkeatkai, Hataitip;Choi, Ji Woen;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • This study was conducted to investigate the effect of calcinated calcium (CC) alone or combination with heat treatment on storage quality and microbial growth in fresh-cut broccoli. Fresh broccoli samples were cut into small pieces and washed in normal tap water (TW), $50{\mu}L{\cdot}L^{-1}$ chlorinated water (pH 6.5), $1.5g{\cdot}L^{-1}$ CC, heat treatment in TW at $45^{\circ}C$, and CC dissolved in TW at $45^{\circ}C$ for 2 minutes separately. Samples were then packaged in $50{\mu}m$ polyethylene bags and stored at $5^{\circ}C$. Results revealed that like $50{\mu}L{\cdot}L^{-1}$ chlorine, washing in CC at normal water temperature was effective in reducing microbial population in fresh-cut broccoli samples. Washing with CC combined with heat treatment increased an electrical conductivity of fresh-cut broccoli. Combined heat treatments with TW and CC reduced aerobic plate count on fresh-cut broccoli, only in initial period of storage. But, later on heat treatment induced injury of fresh-cut broccoli resulting more microbial population compared to non heat treatment. However, samples treated with CC alone had good quality with low off-odor at the end of storage. Results suggest that CC, an environment-friendly sanitizer could be an alternative to chlorinated water for washing of fresh-cut broccoli without affecting sensorial quality.

Microbiological Hazard Analysis for Strawberry Farms at the Harvest Stage to Establish Good Agricultural Practices (GAP) Model Based on Principle of HACCP (HACCP 원리에 기초하는 GAP모델 확립을 위한 딸기 농장의 수확단계에 대한 미생물학적 위해요소 조사)

  • Shim, Won-Bo;Kim, Kyeong-Yeol;Yoon, Yo-Han;Kim, Jang-Eok;Shim, Sang-In;Kim, Yun-Shik;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.104-110
    • /
    • 2013
  • This study assessed hazards at the harvest stage of strawberry farms which may cause risk to humans. A total of 216 samples were collected from 6 strawberry farms (soil culture farms: A, B, C; nutriculture farms: D, E, F) located in Western Gyeongnam. The collected samples were subjected for sanitary indicator bacteria (aerobic plate count, coliforms and Escherichia coli), major foodborne pathogens (E. coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus and Bacillus cereus), and fungi. The levels of APC and coliform in the soil culture farms were 1.0-6.9 and 0.4-4.6 log CFU/g (leaf, mL, hand or 100 $cm^2$), respectively. The samples obtained from the nutriculture farms were contaminated with the levels of 0.8-4.9, and 0.2-2.6 log CFU/g (leaf, mL, hand or 100 $cm^2$) of APC and coliform. However, E. coli was not detected in any samples. In major foodborne pathogens, S. aureus was detected at the level of ${\leq}$3.3 log CFU/hand in workers' hand samples and B. cereus was detected at the levels of 0.4-4.1 log CFU/g (hand or 100 $cm^2$) in soil, plants and workers' hygiene. L. monocytogenes, E. coli O157:H7 and Salmonella spp. were not detected. Fungi were detected at the levels of 1.0-5.2 and 0.2-4.4 log CFU/g (leaf, mL, hand or 100 $cm^2$) in soil culture and nutriculture farms, respectively.