• Title/Summary/Keyword: aerial control

Search Result 749, Processing Time 0.028 seconds

A Research on Aerial Refueling Type and Flight Testing of Boom-Receptacle Systems for a Fixed-wing Aircraft (고정익 항공기 공중급유 유형 및 Boom-Receptacle 시스템 비행시험 평가 방안 연구)

  • Kim, Dae-wook;Kim, Chan-jo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.70-80
    • /
    • 2022
  • An aerial refueling provides for extension of operational time and range for aircraft and enhances mission effectiveness, hence it application by most military aircrafts. The receiver aircraft should have the aerial refueling clearance that is established by performing technical and operational compatibility assessments to certify it for aerial refueling with a specific tanker model. The compatibility assessment includes aerial refueling handling qualities, functional, fuel, lighting system testing and it is finally verified through flight testing. However, since aerial refueling compatibility assessments have never been performed in Korea, there is no experience to determine the test requirements and the scope and size of the test program for a new development aircraft. This paper therefore introduces the common techniques of aerial refueling and aerial refueling flight test methods to understand the aerial refueling FCS (Flight Control System), OFP (operational flight program) and system validation, and aerial refueling envelope clearance of a fixed wing aircraft for a boom and receptacle refueling system that is being introduced into Korea Air Force.

Development of a UAV Using a Humanoid Robot (휴머노이드 로봇을 이용한 무인항공기 개발)

  • Song, Hanjun;Lee, Dasol;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1112-1117
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) are a popular research topic because of a great ripple effect in the future. However, current UAV technologies cannot be applied to manual aerial vehicles without any modification. As an alternative to current UAV technology, humanoid robots are adopted as pilots. If a humanoid robot controls an aerial vehicle autonomously, not only could manual aerial vehicles be utilized as UAVs, but the humanoid robot would also be put into an environment created for humans and conduct some missions suitable for humans. Humanoid robots are also able to handle tools and equipment designed for humans. In order to prove that a humanoid robot can pilot an airplane, an experiment is performed and the results of this experiment are shown in this paper.

Automatic Landing Guidance Law Design for Unmanned Aerial Vehicles based on Pursuit Guidance Law (추적유도기법 기반 무인항공기 자동착륙 유도법칙 설계)

  • Yoon, Seung-Ho;Bae, Se-Lin;Han, Young-Soo;Kim, Hyoun-Jin;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1253-1259
    • /
    • 2008
  • This paper presents a landing controller and guidance law for net-recovery of fixed-wing unmanned aerial vehicles. A linear quadratic controller was designed using the system identification result of the unmanned aerial vehicle. A pursuit guidance law is applied to guide the vehicle to a recovery net with imaginary landing points on the desired approach path. The landing performance of a pure pursuit guidance, a constant pseudo pursuit guidance, and a variable pseudo pursuit guidance is compared. Numerical simulation using an unmanned aerial vehicle model was performed to verify the performance of the proposed landing guidance law.

Aerial Application using a Small RF Controlled Helicopter (V) - Tail Rotor System - (소형 무인헬기를 이용한 항공방제기술(V) -테일 로터부의 구성-)

  • Koo, Y.M.;Seok, T.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2007
  • In this study, a tail rotor system for an agricultural RF controlled helicopter was developed and tested. This study concluded the mechanical development of the 'Agro-heli' by completing the tail rotor system and its radio console. The RF control system was closely related with the tail system for the control of flying attitude. The thrust of the tail system balance off the reaction torque, created by the main rotor. Lifting tests with and without the tail system were compared for estimating the consumption of power. The tail system would use $4{\sim}5%$ of the total power which was in an acceptable range. Flying performance and attitude was visually inspected. It showed reliable and safe control during the distance flying trials and could be adapted for utilization in aerial applications. Aerial application using an RF controlled agricultural helicopter may make precise and timely spraying possible.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Metni, Najib;Hamel, Tarek
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.

Design of Multiple Myo-Based UAV Controller (다중 Myo 기반의 UAV 제어기 설계)

  • Kim, Hyeok;Kim, Donguk;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Given that the utilization of Unmanned Aerial Vehicles (UAVs) is recently increased, a variety of UAV control methods are being applied. In general, it has been used a lot to directly control a UAV via manipulator. However, tangible user interface is required to control UAVs accurately. This paper proposes a method for controlling an UAV based on multiple Myos. The UAV is connected to a ground control station and then controlled by Myos. Intuitive control is possible by controlling the UAV using tangible user interface.

Development of Flight Control Application for Unmanned Aerial Vehicle Employing Linux OS (리눅스 기반 무인항공기 제어 애플리케이션 개발)

  • Kim Myoung-Hyun;Moon Seungbin;Hong Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2006
  • This paper describes UAV (Unmanned Aerial Vehicle) control system which employs PC104 modules. It is controlled by application program based on Linux OS. This application consists of both Linux device driver in kernel-space and user application in user-space. In order to get data required in the unmanned flight, external devices are connected to PC104 modules. We explain how Linux device drivers deal with data transmitted by external devices and we account for how the user application controls UAV on the basis of data processed in the device driver as well. Furthermore we look into the role of GCS (Ground Control Station) which is to monitor the state of UAV.

A Study on the Analysis and Improvement of STANAG 4586 / MAVLink Protocol for Interoperability Improvement of UAS (UAS 상호운용성 향상을 위한 STANAG 4586과 MAVLink 프로토콜 비교분석 및 개선방안 연구)

  • Nam, Gyeongrae;Go, Jeonghwan;Kwon, Cheolhee;Jeong, Soyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.618-638
    • /
    • 2020
  • An unmanned aerial vehicle(UAV) refers to an aircraft that has all or part of its functions to autonomously fly by grasping the surrounding environment by remote control on the ground without a pilot on board. With the development of unmanned aerial technology, civil/military forces are developing unmanned aerial vehicles for various purposes. In order to control unmanned aerial vehicles from the ground, communication protocols between unmanned aerial vehicles and ground control equipment are required, and civil/military forces have developed and used a photocall for different purposes. In this study, the characteristics of the MAVLink protocol used in the private sector and the STANAG 4586 protocol used in the military are compared/analyzed in detail to find elements to complement each other and to draw improvement measures for protocol unification.

Development of a shared remote control robot for aerial work in nuclear power plants

  • Shin, Hocheol;Jung, Seung Ho;Choi, You Rack;Kim, ChangHoi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.613-618
    • /
    • 2018
  • We are developing a shared remote control mobile robot for aerial work in nuclear power plants (NPPs); a robot consists of a mobile platform, a telescopic mast, and a dual-arm slave with a working tool. It is used at a high location operating the manual operation mechanism of a fuel changer of a heavy water NPP. The robot system can cut/weld a pipe remotely in the case of an emergency or during the dismantling of the NPP. Owing to the challenging control mission considering limited human operator cognitive capability, some remote tasks require a shared control scheme, which demands systematic software design and integration. Therefore, we designed the architecture of the software systematically.