• Title/Summary/Keyword: advanced vehicle

Search Result 1,329, Processing Time 0.031 seconds

Control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) Using Backstepping.

  • Kannan, Somasundar;Lian, Bao-Hua;Hwang, Tae-Won;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1005-1007
    • /
    • 2005
  • A Nonlinear approach to control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) is presented. Using Backstepping, a globally stabilizing control law is derived. We derive backstepping control law for angle of attack and sideslip control. The inherent nonlinear nature of the system are considered here which helps in naturally stabilizing without extensive external effort. Thus, the resulting control law is much simpler than if the feedback linearization had been used.

  • PDF

Band-Gap Reference Voltage Control Strategy for Fuel Cell Hybrid Vehicle

  • Kim, Young-Do;Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.163-165
    • /
    • 2007
  • Generally, the power management system of fuel cell hybrid vehicle (FCHV) requires a unidirectional DC/DC converter for the fuel cell (FC) and a bidirectional DC/DC converter for the battery. To manage the various power flows between these modules with a simple way, a new band-gap reference voltage (BGRV) control strategy is proposed. The proposed method easily controls this variable power flow by setting the reference voltages of each converter to slightly different values, and it can be simply implemented by commercial controllers as well. The operational principle of proposed method is presented and verified experimentally by the 400W prototype.

  • PDF

Current Status and Development Direction of Advanced Air Mobility ICTs (Advanced Air Mobility ICT 기술 현황 및 발전 방향)

  • B.J. Oh;M.S. Lee;B.K. Kim;Y.J. Jeong;Y.J. Lim;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • In this study, the status of global advanced air mobility (AAM) was investigated to derive information and communications technologies (ICTs) that should be prepared according to directions of domestic AAM development. AAM is an urban air traffic system for moving from city to city by electric vertical take-off and landing or personal aircraft. It is expected to establish a three-dimensional air traffic system that can solve ground traffic congestion caused by the rapid global urbanization. With the full-scale commercialization of AAM solutions, high-density air traffic is expected, and with the advent of the personal air vehicle (PAV), the flight space usage is expected to expand. Therefore, it is necessary to develop a safe AAM service through early research on core ICTs for autonomous flight.

COARSE GRID LARGE-EDDY SIMULATION OF FLOW OVER A HEAVY VEHICLE (화물차 주위 유동의 성긴 격자 큰에디모사)

  • Lee, S.;Kim, M.;You, D.;Kim, J.J.;Lee, S.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • In order to investigate effects of grid resolution on large-eddy simulation of flow over a heavy vehicle, large-eddy simulations over the vehicle with coarse grid and fine grid are conducted. In addition, comparison of drag coefficients with the experimental data obtained by a wind tunnel experiment is conducted. Both of the drag coefficients of coarse grid and fine grid large-eddy simulation show good agreement with the experimental data. Flow fields obtained by the coarse and the fine grid large-eddy simulation are compared in the vehicle frontal-face region, the vehicle rear wheel region, and the vehicle base region. Coarse grid large-eddy simulation shows good agreement with the fine grid large-eddy simulation in the vehicle front face region and the vehicle rear wheel region, since the flow over the present vehicle is dominated by flow separation which is geometrically pre-determined, not by the skin friction which is known to be sensitive to grid resolution.

Comparision in Emission Inspection System of a Gasoline Vehicle in Service (운행 휘발유 자동차의 배출가스검사 시스템 비교)

  • Oh, Sangyeob;Park, Wondeok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In the most of a nation, the safety and emission gas inspection system of a vehicle in service have been conducted with the most compatible inspection system according to its real environmental situation. Especially, the state of vehicle emission gas is measured by advanced emission gas inspection equipment. It has the problem that the decrease effect of an environmental pollution matter is not calculated by weight percent measurement type equipment. Therefore, in this study, the correlations for the results of emission gas measurement are analyzed by comparing a weight percent measurement type (IDLE+ASM2525 mode) and an advanced mass measurement type (IM240 mode). As the result, the selectivity of an emission gas by IM240 mode is higher than that by IDLE+ASM2525 mode. In the future, therefore, the introduction of IM240 mode and a mass measurement type equipment are necessary. Also, we need to prepare a vehicle emission gas inspection system for introducing IM240 mode.

Unmanned Aerial Vehicle Recovery Using a Simultaneous Localization and Mapping Algorithm without the Aid of Global Positioning System

  • Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.98-109
    • /
    • 2010
  • This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping (SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity's sake, a blimp-type of UAV model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated by a number of simulations.

Performance Analysis of Steel-FRP Composite Safety Barrier by Vehicle Crash Simulation (충돌 시뮬레이션을 활용한 강재-FRP 합성 방호울타리의 성능평가)

  • Lee, Min-Chul;Kwon, Ki-Young;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • In this study, the performance of a steel-FRP composite bridge safety barrier was evaluated through vehicle crash simulation. Surface veil, DB and Roving fibers were used for FRP. The MAT58 material model provided by LS-DYNA software was used to model FRP material. Spot weld option was used for modeling contact between steel and FRP beam. The structural strength performance, the passenger protection performance, and the vehicle behavior after crash were evaluated corresponding to the vehicle crash manual. As the result, A steel-FRP composite safety barrier was satisfied with the required performance.

The Electro-Magnetic Susceptibility Test Method of a Road Vehicle Considering the Field Uniformity (전계의 균일성을 고려한 자동차의 전자파 내성시험 방법에 관한 연구)

  • Bae, Min-Gwan;Shin, Jae-Kon;Yong, Gee-Joong;Woo, Hyun-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.84-91
    • /
    • 2010
  • Owing to revolutionary developments in automobile technologies, a variety of advanced vehicles - hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc. - emerges recently. The safety is getting more important for developing automobiles. The electro-magnetic compatibility has to be assured, since those advanced vehicles are equipped with various new electronic systems. Electro-magnetic compatibility tests, in general, consist of an EMI(electro-magnetic interference) test and an EMS (electro-magnetic susceptibility) test. We investigated the susceptibility test method suggested in KMVSS (Korean Motor Vehicle Safety Standard) as the EMS test method. A series of experiments results that the above test method should be partially revised to comply with a Korean governmental standard method. In this paper, the some directions of modifications are presented to enhance the quality of the above EMS test method.

A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Joon-Hyuk;Kim, Seog-Won;Kim, Sang-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.170-177
    • /
    • 2020
  • This study examined the clamping force control method and the braking performance test results of an electromechanical brake (EMB) using braking test equipment. Most of the studies related to EMBs have been carried out in the automotive field, dealing mainly with the static test results for various control methods. On the other hand, this study performed a dynamic performance evaluation. The three-phase interior permanent magnet synchronous motor (IPMSM) was applied to drive the actuator of the EMB, and the analysis was verified by JMAG(Ver. 18.0), which is finite element method (FEM) software. The current control, speed control, and position control were used for clamping force control of the EMB, and the maximum torque per ampere (MTPA) control was applied to the current controller for efficient control. The EMB's emergency braking deceleration performance was tested in the same way as conventional pneumatic brake systems when the wheel of a train rotates at 110 km/h, 230 km/h, and 300 km/h. The emergency braking time, with the wheel stopped completely at the maximum rotational speed, was approximately 73 seconds. The similarity of the braking time and deceleration pattern was verified through a comparison with the performance test results of the pneumatic brake system applied to the next generation high-speed railway vehicle (HEMU-430X).