• Title/Summary/Keyword: advanced sensors

Search Result 837, Processing Time 0.023 seconds

A Mini Review of Recent Advances in Optical Pressure Sensor

  • Gihun Lee;Hyunjin Kim;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Innovative and advanced technologies, including robots, augmented reality, virtual reality, the Internet of Things, and wearable medical equipment, have largely emerged as a result of the rapid evolution of modern society. For these applications, pressure monitoring is essential and pressure sensors have attracted considerable interest. To improve the sensor performance, several new designs of pressure sensors have been researched based on resistive, capacitive, piezoelectric, optical, and triboelectric types. In particular, optical pressure sensors have been actively studied owing to their advantages, such as robustness to noise and remote sensing capability. Herein, a review of recent research on optical pressure sensors with self-powered sensing, remote sensing, high spatial resolution, and multimodal sensing capabilities is presented from the viewpoints of design, fabrication, and signal processing.

Spectroscopic characterization of electroluminescent ZnS:Cu,Cl phosphor coated by sol-gel process

  • Lee, You-Hui;Han, Chi-Hwan;Han, Sang-Do;Chang, Mi-Youn;Sharma, Gaytri.;Park, Youn-Bong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1323-1326
    • /
    • 2005
  • The photoluminescence, electroluminescence and surface properties of ZnS:Cu,Cl phosphor coated by sol-gel process were studies. Na-silicate was used as precursor coating material. pH of solution and the concentration of Na-silicate are the important conditions to obtain the uniform coating on the phosphors. Also, the electroluminescent devices were made with Na-silicate coated phosphor. The spectroscopic characterization is performed by photospectrometer.

  • PDF

Chemical sensors technology (화학 센서 기술)

  • Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2009
  • There have been continued effects to develop various types of chemical sensors according to the demands in many application fields such as safety, pollution, environment, medical engineering and food industries etc. In this review, the author intended to cover the general aspects of chemical sensors, including the history of the development, the classification, the sensing properties, and the types and application examples. And the future outlook of the chemical sensor technology, focusing on the advanced materials, high technology fusion, miniaturized intelligent system and ubiquitous sensor networks etc., has been described.

Triboelectric Nanogenerators for Self-powered Sensors

  • Rubab, Najaf;Kim, Sang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • Self-powered sensors play an important role in everyday life, and they cover a wide range of topics. These sensors are meant to measure the amount of relevant motion and transform the biomechanical activities into electrical signals using triboelectric nanogenerators (TENGs) since they are sensitive to external stimuli such as pressure, temperature, wetness, and motion. The present advancement of TENGs-based self-powered wearable, implantable, and patchable sensors for healthcare monitoring, human body motion, and medication delivery systems was carefully emphasized in this study. The use of TENG technology to generate electrical energy in real-time using self-powered sensors has been the topic of considerable research among various leading scholars. TENGs have been used in a variety of applications, including biomedical and healthcare physical sensors, wearable devices, biomedical, human-machine interface, chemical and environmental monitoring, smart traffic, smart cities, robotics, and fiber and fabric sensors, among others, as efficient mechanical-to-electric energy conversion technologies. In this evaluation, the progress accomplished by TENG in several areas is extensively reviewed. There will be a discussion on the future of self-powered sensors.

Triboelectrification based Multifunctional Tactile Sensors

  • Park, Hyosik;Kim, Jeongeun;Lee, Ju-Hyuck
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.139-144
    • /
    • 2022
  • Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.

Synthesis and characterization of orange-yellow phosphor for inorganic EL device

  • Chang, Mi-Youn;Lee, You-Hui;Han, Sang-Do;Khatkar, S.P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1334-1337
    • /
    • 2005
  • Orange-yellow phosphor has been synthesized by solid-state method for inorganic EL devices. Zinc sulfide is used as host material for the phosphor and the phosphor consists of copper and manganese as activators. The dependence of the photoluminescence (PL) and electroluminescence(EL) properties on the copper and manganese concentrations has been investigated.

  • PDF

α-Fe2O3 nanostructure-based gas sensors

  • Lee, Seonyong;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.210-217
    • /
    • 2021
  • Gas sensors based on semiconducting metal oxides have attracted considerable attention for various applications owing to their facile, cheap, and small-scale manufacturing processes. Hematite (α-Fe2O3) is widely considered as a promising candidate for a gas-sensing material owing to not only its abundance in the earth's crust and low price but also its chemical stability and suitable bandgap energy. However, only a few studies have been performed in this direction because of the low gas response and sluggish response of hematite-based gas sensors. Nanostructures present a representative solution to both overcome these disadvantages and exploit the desirable features to produce high-performance gas sensors. However, several challenges remain for adopting gas sensors based on metal oxide nanostructures, such as improving cost efficiency and facilitating mass production. This review summarizes the recent studies on gas sensors based on hematite nanostructures. It also provides useful insights into various strategies for enhancing the gas-sensing properties of gas sensors based on hematite nanostructures.

Structural Performance Tests of Down Scaled Composite Wind Turbine Blade using Embedded Fiber Bragg Grating Sensors

  • Kim, Sang-Woo;Kim, Eun-Ho;Rim, Mi-Sun;Shrestha, Pratik;Lee, In;Kwon, Il-Bum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.346-353
    • /
    • 2011
  • In this study, the structural performance tests, i.e., static tests and dynamic tests of the composite wind turbine blade, were carried out by using the embedded fiber Bragg grating (FBG) sensors. The composite wind turbine blade used in the test is the 1/23 scale of the 750 kW composite blade. In static tests, the deflections along the blade were evaluated. Evaluations were carried out with simple beam theory and quadratic fitting method by using the embedded FBG sensors to predict the structural behavior with respect to the load. The deflections were compared to those obtained from the laser displacement sensor and electric strain gauges. They showed good agreement. Modal tests were performed to investigate the dynamic characteristics using the embedded FBG sensors. The natural frequencies obtained from the FBG sensors corresponding to the nine mode shapes of the blade were compared to those from the laser Doppler vibrometer. They were found to be consistent with each other. Therefore, it is concluded that the embedded FBG sensors have a great capability for measuring the structural performances of the composite wind turbine blade when structural performance tests are carried out.

Recent Trends of Light-enhanced Metal Oxide Gas Sensors: Review

  • Cho, Minkyu;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • Recent light-enhanced metal oxide gas sensors are reviewed in this article. The basic mechanisms of a light-enhanced metal oxide gas sensor are discussed. Many literatures reveal that the standalone sensitivity and the response/recovery time enhancements enabled by the exposing light are not as high as the performance enhancement provided by external heating. Therefore, both optimal amount of external heating and exposed light intensity are necessary to increase the performance of these light-enhanced gas sensors. The development of highly light sensitive materials and structures is important to lower the overall power consumptions of the sensors.

Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality (실내 대기질 진단을 위한 금속산화물 기반 폼알데하이드 가스센서 연구 동향)

  • Kim, Yoon Hwa;Koo, Won-Tae;Jang, Ji-Soo;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.377-384
    • /
    • 2019
  • People currently spend more than 80% of their time indoors; therefore, the management of indoor air quality has become an important issue. The contamination of indoor air can cause sick house syndrome and various environmental diseases such as atopy and nephropathy. Formaldehyde gas, which is the main contaminant of indoor air, is lethal even with microscopic exposure; however, it is commonly used as an adhesive and waterproofing agent for indoor building materials. Therefore, there is a need for a gas sensor capable of detecting trace amounts of formaldehyde gas. In this review, we summarize recent studies on metal oxide-based semiconductor gas sensors for formaldehyde gas detection, methods to improve the gas-sensing properties of metal oxides of various dimensions, and the effects of catalysts for the detection of parts-per-billion level gases. Through this, we discuss the necessary characteristics of the metal oxidebased semiconductors for gas sensors for the development of next-generation sensors.