Browse > Article
http://dx.doi.org/10.5369/JSST.2016.25.2.103

Recent Trends of Light-enhanced Metal Oxide Gas Sensors: Review  

Cho, Minkyu (Department of Mechanical Engineering, Korea Advanced Institue of Science and Technology (KAIST))
Park, Inkyu (Department of Mechanical Engineering, Korea Advanced Institue of Science and Technology (KAIST))
Publication Information
Journal of Sensor Science and Technology / v.25, no.2, 2016 , pp. 103-109 More about this Journal
Abstract
Recent light-enhanced metal oxide gas sensors are reviewed in this article. The basic mechanisms of a light-enhanced metal oxide gas sensor are discussed. Many literatures reveal that the standalone sensitivity and the response/recovery time enhancements enabled by the exposing light are not as high as the performance enhancement provided by external heating. Therefore, both optimal amount of external heating and exposed light intensity are necessary to increase the performance of these light-enhanced gas sensors. The development of highly light sensitive materials and structures is important to lower the overall power consumptions of the sensors.
Keywords
Chemical sensors; metal oxide; photo-enhancement; light-enhanced gas sensors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Geng, Z. He, X. Chen, W. Dai, and X. Wang, "Gas sensing property of ZnO under visible light irradiation at room temperature", Sens. Actuators, B, Vol. 188, pp. 293-297, 2013.   DOI
2 C. Shao, Y. Chang, and Y. Long, "High performance of nanostructured ZnO film gas sensor at room temperature", Sens. Actuators, B, Vol. 204, pp. 666-672, 2014.   DOI
3 J. Sun, J. Xu, Y. Yu, P. Sun, F. Liu, and G. Lu, "UV-activated room temperature metal oxide based gas sensor attached with reflector", Sens. Actuators, B, Vol. 169, pp. 291-296, 2012.   DOI
4 S. Park, S. An, Y. Mun, and C. Lee, "UV-Enhanced NO2 gas sensing properties of $SnO_2$-Core/ZnO-shell nanowires at room temperature", ACS Appl. Mater. Interfaces, Vol. 5, pp. 4285-4292, 2013.   DOI
5 E. Comini, G. Faglia, and G. Sberveglieri, "UV light activation of tin oxide thin films for $NO_2$ sensing at low temperatures", Sens. Actuators, B, Vol. 78, pp. 73-77, 2001.   DOI
6 W. Gopel and K. D. Schierbaum, "$SnO_2$ sensors: current status and future prospects", Sens. Actuators, B, Vol. 26, pp. 1-12, 1995.   DOI
7 C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: Sensitivity and influencing factors", Sensors, Vol. 10, p. 2088, 2010.   DOI
8 S. Park, S. An, H. Ko, S. Lee, and C. Lee, "Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires", Sens. Actuators, B, Vol. 188, pp. 1270-1276, 2013.   DOI
9 J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, et al., "Equivalence between thermal and room temperature UV lightmodulated responses of gas sensors based on individual $SnO_2$ nanowires", Sens. Actuators, B, Vol. 140, pp. 337-341, 2009.   DOI
10 Y. Gui, S. Li, J. Xu, and C. Li, "Study on $TiO_2$-doped ZnO thick film gas sensors enhanced by UV light at room temperature", Microelectron. J., Vol. 39, pp. 1120-1125, 2008.   DOI
11 J.-H. Lin, Y.-J. Chen, H.-Y. Lin, and W.-F. Hsieh, "Twophoton resonance assisted huge nonlinear refraction and absorption in ZnO thin films", J. Appl. Phys., Vol. 97, p. 033526, 2005.   DOI
12 C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, et al., "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires", Appl. Phys. Lett., Vol. 89, p. 042117, 2006.   DOI
13 J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D. q. He, et al., "Enhancement of gas sensing properties of CdS Nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation", ACS Appl. Mater. Interfaces, Vol. 3, pp. 2253-2258, 2011.   DOI
14 B. P. J. de Lacy Costello, R. J. Ewen, N. M. Ratcliffe, and M. Richards, "Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles", Sens. Actuators, B, Vol. 134, pp. 945-952, 2008.   DOI
15 E. Comini, L. Ottini, G. Faglia, and G. Sberveglieri, "$SnO_2$ RGTO UV activation for CO monitoring", IEEE Sens. J., Vol. 4, pp. 17-20, 2004.   DOI
16 S.-W. Fan, A. K. Srivastava, and V. P. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO", Appl. Phys. Lett., Vol. 95, p. 142106, 2009.   DOI
17 D. Yang, K. Kang, D. Kim, Z. Li, and I. Park, "Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application", Sci. Rep., Vol. 5, p. 8149, 2015.   DOI
18 L. Peng, T.-F. Xie, M. Yang, P. Wang, D. Xu, S. Pang, et al., "Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature", Sens. Actuators, B, Vol. 131, pp. 660-664, 2008.   DOI
19 J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. k. Mukhopadhyay, et al., "High-resolution electrohydrodynamic jet printing", Nat. Mater., Vol. 6, pp. 782-789, 2007.   DOI
20 M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, et al., "Transfer printing by kinetic control of adhesion to an elastomeric stamp", Nat. Mater., Vol. 5, pp. 33-38, 2006.   DOI
21 Y. Mun, S. Park, S. An, C. Lee, and H. W. Kim, "NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation", Ceram. Int., Vol. 39, pp. 8615-8622, 2013.   DOI
22 O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, et al., "Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature", Sens Actuators, B, Vol. 144, pp. 56-66, 2010.   DOI