Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.3.139

Triboelectrification based Multifunctional Tactile Sensors  

Park, Hyosik (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Kim, Jeongeun (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Lee, Ju-Hyuck (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of Sensor Science and Technology / v.31, no.3, 2022 , pp. 139-144 More about this Journal
Abstract
Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.
Keywords
Tactile sensors; Triboelectrification; Position sensors; Pressure sensors; Contact material recognition;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, "Triboelectric nanogenerator: Vertical contact-separation mode", in Triboelectric Nanogenerators: Springer, pp. 23-47, 2016.
2 K. Zhou, Y. Zhao, X. Sun, Z. Yuan, G. Zheng, K. Dai, L. Mi, C. Pan, C. Liu, and C. Shen, "Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing", Nano Energy., Vol. 70, p. 104546, 2020.   DOI
3 H. J. Ryoo, C. W. Lee, J. W. Han, W. Kim, and D. Choi, "A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions", J. Sens. Sci. Technol., Vol. 29, No. 5, pp. 312-322, 2020.   DOI
4 Q. Shi, Z. Zhang, T. Chen, and C. Lee, "Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch", Nano Energy., Vol. 62, pp. 355-366, 2019.   DOI
5 T. Chen, Q. Shi, M. Zhu, T. He, L. Sun, L. Yang, and C. Lee, "Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator", ACS nano., Vol. 12, No. 11, pp. 11561-11571, 2018.   DOI
6 J. He, Z. Xie, K. Yao, D. Li, Y. Liu, Z. Gao, W. Lu, L. Chang, and X. Yu, "Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics", Nano Energy., Vol. 81, p. 105590, 2021.   DOI
7 Y. W. Cai, X. N. Zhang, G. G. Wang, G. Z. Li, D. Q. Zhao, N. Sun, F. Li, H. Y. Zhang, J. C. Han, and Y. Yang, "A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin," Nano Energy., Vol. 81, p. 105663, 2021.   DOI
8 Z. Song, J. Yin, Z. Wang, C. Lu, Z. Yang, Z. Zhao, Z. Lin, J. Wang, C. Wu, and J. Cheng, "A flexible triboelectric tactile sensor for simultaneous material and texture recognition", Nano Energy., Vol. 93, p. 106798, 2022.   DOI
9 X. Rong, J. Zhao, H. Guo, G. Zhen, J. Yu, C. Zhang, and G. Dong, "Material recognition sensor array by electrostatic induction and triboelectric effects," Advanced Materials Technologies, Vol. 5, No. 9, p. 2000641, 2020.
10 J. Wang, P. Cui, J. Zhang, Y. Ge, X. Liu, N. Xuan, G. Gu, G. Cheng, and Z. Du, "A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection", Nano Energy., Vol. 89, p. 106320, 2021.   DOI
11 Y. Lee, S. Lim, W. J. Song, S. Lee, S. J. Yoon, J. M. Park, M. G. Lee, Y. L. Park, and J. Y. Sun, "Triboresistive Touch Sensing: grid-free Touch Point Recognition Based on Monolayered Ionic Power Generators", Adv. Mater., p. 2108586, 2022.
12 T. Chen, Q. Shi, K. Li, Z. Yang, H. Liu, L. Sun, J. A. Dziuban, and C. Lee, "Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad", Nanomaterials., Vol. 8, No. 8, p. 613, 2018.   DOI
13 X. Wang, M. Que, M. Chen, X. Han, X. Li, C. Pan, and Z. L. Wang, "Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing", Adv. Mater., Vol. 29, No. 15, p. 1605817, 2017.   DOI
14 C. Chen, L. Chen, Z. Wu, H. Guo, W. Yu, Z. Du, and Z. L. Wang, "3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors", Materials Today, Vol. 32, pp. 84-93, 2020.   DOI
15 X. Zhao, Z. Zhang, L. Xu, F. Gao, B. Zhao, T. Ouyang, Z. Kang, Q. Liao, and Y. Zhang, "Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition", Nano Energy., Vol. 85, p. 106001, 2021.   DOI
16 B. Ji, Q. Zhou, B. Hu, J. Zhong, J. Zhou, and B. Zhou, "Bio-Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range," Adv. Mater., Vol. 33, No. 27, p. 2100859, 2021.   DOI
17 C. Ning, K. Dong, R. Cheng, J. Yi, C. Ye, X. Peng, F. Sheng, Y. Jiang, and Z. L. Wang, "Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing", Adv. Funct. Mater., Vol. 31, No. 4, p. 2006679, 2021.   DOI
18 D. S. Kang, M. J. Kim, and W. K. Moon, "Optimization of a capacitive sensor for high dynamic range", J. Sens. Sci. Technol., Vol. 19, No. 2, pp. 92-98, 2010.   DOI
19 X. Pu, Q. Tang, W. Chen, Z. Huang, G. Liu, Q. Zeng, J. Chen, H. Guo, L. Xin, and C. Hu, "Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing", Nano Energy., Vol. 76, p. 105047, 2020.   DOI
20 G. Lee, J. H. Son, S. Lee, S. W. Kim, D. Kim, N. N. Nguyen, S. G. Lee, and K. Cho, "Fingerpad-Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition", Adv. Sci., Vol. 8, No. 9, p. 2002606, 2021.   DOI
21 W. J. Kim, Y. S. Cho, H. J. Kang, and S. Y. Choi, "Development of miniature weight sensor using piezoresistive pressure sensor", J. Sens. Sci. Technol., Vol. 14, No. 4, pp. 237-243, 2005.   DOI
22 H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, and C. Xu, "Quantifying the triboelectric series", Nat. Commun., Vol. 10, No. 1, pp. 1-9, 2019.   DOI
23 C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, and Z. Bao, "A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics", Sci. Robot., Vol. 3, No. 24, p. eaau6914, 2018.   DOI
24 D. P. Cotton, I. M. Graz, and S. P. Lacour, "A multifunctional capacitive sensor for stretchable electronic skins", IEEE Sens. J., Vol. 9, No. 12, pp. 2008-2009, 2009.   DOI
25 D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T.-S. Kim, and I. Park, "Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer", ACS Appl. Mater. Interfaces, Vol. 8, No. 26, pp. 16922-16931, 2016.   DOI
26 W. Kim, H. Lee, K.-N. Lee, and K. Kim, "A Polymer-based Capacitive Air Flow Sensor with a Readout IC and a Temperature Sensor", J. Sens. Sci. Technol., Vol. 28, No. 1, pp. 1-6, 2019.   DOI
27 S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, and R. Wang, "Soft microfluidic assemblies of sensors, circuits, and radios for the skin", Sci., Vol. 344, No. 6179, pp. 70-74, 2014.   DOI
28 N. Li, Z. Yin, W. Zhang, C. Xing, T. Peng, B. Meng, J. Yang, and Z. Peng, "A triboelectric-inductive hybrid tactile sensor for highly accurate object recognition", Nano Energy., Vol. 96, p. 107063, 2022.   DOI
29 F. Reverter, J. Jordana, M. Gasulla, and R. Pallas-Areny, "Accuracy and resolution of direct resistive sensor-to-microcontroller interfaces", Sens. Actuators A Phy., Vol. 121, No. 1, pp. 78-87, 2005.   DOI
30 T. Sandner, H. Conrad, T. Klose, and H. Schenk, "Integrated piezo-resistive positionssensor for microscanning mirrors", in 2007 IEEE/LEOS Int. Conf. Opt. MEMS Nanophotonics, 2007: IEEE, pp. 195-196, 2007.
31 H. J. Bae, S. H. Son, and S. Y. Choi, "Fabrication of silicon piezoresistive pressure sensor for a biomedical in-vivo measurements", J. Sens. Sci. Technol., Vol. 10, No. 3, pp. 148-155, 2001.
32 X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li, M. Que, Z. Peng, H. Wang, and C. Pan, "A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics", Adv. Mater., Vol. 30, No. 12, p. 1706738, 2018.   DOI