• Title/Summary/Keyword: advanced packaging

Search Result 355, Processing Time 0.033 seconds

A Comparison Study on Various Quantum Dots Light Emitting Diodes Using TiO2 Nanoparticles as Inorganic Electron Transport Layer (무기 전자 수송층으로 TiO2 나노입자를 사용한 다양한 양자점 전계발광 소자의 특성 비교 연구)

  • Kim, Moonbon;Yoon, Changgi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.71-74
    • /
    • 2019
  • In this study, we fabricated two standard and inverted quantum dot light emitting diodes (QLEDs) using $TiO_2$ nanoparticles (NPs) with lower electron mobility than ZnO NPs as inorganic electron transport layer to suppress electron injection into the emitting layer. Current density was much higher for the inverted QLEDs than the standard ones. The inverted QLEDs were brighter, but showed low current efficiency due to the high current density. In addition, as the current density was higher, the driving voltage was higher, and the red shift was confirmed in the emission wavelength spectrum. The low current density in the standard structured devices showed that the possibility that $TiO_2$ NPs could suppress the electron injection in the QLEDs.

Technical Trends of Ti3C2TX MXene-based Flexible Electrodes (Ti3C2TX MXene 기반 유연 전극 기술 개발 동향)

  • Choi, Su Bin;Meena, Jagan Singh;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • Ti3C2TX MXene, first reported by Naguib et al. in 2011, has attracted tremendous attention due to its excellent hydrophilicity, electrical conductivity, and mechanical/chemical stability. Since MXene is a two-dimensional material with a thickness of few nanometers, which ensure its flexibility. In last few years, due to these properties many researchers used Ti3C2TX MXene into various fields such as flexible smart sensors, energy harvesting/storage devices, supercapacitors and electromagnetic interference shielding systems. In this review article, we have briefly discussed the various synthesis processes and characteristics of Ti3C2TX MXene. Moreover, we reviewed the latest development of Ti3C2TX MXene as flexible electrode material to be used into different applications.

Improvement of Reliability of Low-melting Temperature Sn-Bi Solder (저융점 Sn-Bi 솔더의 신뢰성 개선 연구)

  • Jeong, Min-Seong;Kim, Hyeon-Tae;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, semiconductor devices have been used in many fields owing to various applications of mobile electronics, wearable and flexible devices and substrates. During the semiconductor chip bonding process, the mismatch of coefficient of therm al expansion (CTE) between the substrate and the solder, and the excessive heat applied to the entire substrate and components affect the performance and reliability of the device. These problems can cause warpage and deterioration of long-term reliability of the electronic packages. In order to improve these issues, many studies on low-melting temperature solders, which is capable of performing a low-temperature process, have been actively conducted. Among the various low-melting temperature solders, such as Sn-Bi and Sn-In, Sn-58Bi solder is attracting attention as a promising low-temperature solder because of its advantages such as high yield strength, moderate mechanical property, and low cost. However, due to the high brittleness of Bi, improvement of the Sn-Bi solder is needed. In this review paper, recent research trends to improve the mechanical properties of Sn-Bi solder by adding trace elements or particles were introduced and compared.

A Study on the Characteristics of a Quantum Dots Light-Emitting Diodes Using a Mixed Layer of Quantum Dots and Hole Transport Materials (양자점과 정공 수송 물질의 혼합층을 사용한 양자점 전계발광 소자의 특성 연구)

  • Yoon, Changgi;Oh, Seongkeun;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.69-72
    • /
    • 2021
  • Various studies for QLEDs using inkjet printing has been actively conducted. Multilayers in QLEDs need an orthogonal process inevitably using different solvents and it makes the inkjet printing process more difficult and expensive. Therefore, coating two layers in a single process can reduce the fabrication step, resulting in the process time. In this study, we fabricated QLEDs of standard structure using a mixture of emission layer and hole transport layer. The mixed layer was fabricated by dissolving TFB and QDs in chlorobenzene, and the maximum luminance of the device was 45,850 cd/m2. It shows the bright future of the electroluminescence devices applied with inkjet printing process.

Advances in Power Semiconductor Devices for Automotive Power Inverters: SiC and GaN (전기자동차 파워 인버터용 전력반도체 소자의 발전: SiC 및 GaN)

  • Dongjin Kim;Junghwan Bang;Min-Su Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this paper, we introduce the development trends of power devices which is the key component for power conversion system in electric vehicles, and discuss the characteristics of the next-generation wide-bandgap (WBG) power devices. We provide an overview of the characteristics of the present mainstream Si insulated gate bipolar transistor (IGBT) devices and technology roadmap of Si IGBT by different manufacturers. Next, recent progress and advantages of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) which are the most important unipolar devices, is described compared with conventional Si IGBT. Furthermore, due to the limitations of the current GaN power device technology, the issues encountered in applying the power conversion module for electric vehicles were described.

Properties of Cu Pillar Bump Joints during Isothermal Aging (등온 시효 처리에 따른 Cu Pillar Bump 접합부 특성)

  • Eun-Su Jang;Eun-Chae Noh;So-Jeong Na;Jeong-Won Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Recently, with the miniaturization and high integration of semiconductor chips, the bump bridge phenomenon caused by fine pitches is drawing attention as a problem. Accordingly, Cu pillar bump, which can minimize the bump bridge phenomenon, is widely applied in the semiconductor package industry for fine pitch applications. When exposed to a high-temperature environment, the thickness of the intermetallic compound (IMC) formed at the joint interface increases, and at the same time, Kirkendall void is formed and grown inside some IMC/Cu and IMC interfaces. Therefore, it is important to control the excessive growth of IMC and the formation and growth of Kirkendall voids because they weaken the mechanical reliability of the joints. Therefore, in this study, isothermal aging evaluation of Cu pillar bump joints with a CS (Cu+ Sn-1.8Ag Solder) structure was performed and the corresponding results was reported.

Laser Ablation of Polypropylene Films using Nanosecond, Picosecond, and Femtosecond Laser

  • Sohn, Ik-Bu;Noh, Young-Chul;Kim, Young-Seop;Ko, Do-Kyeong;Lee, Jong-Min;Choi, Young-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.38-41
    • /
    • 2008
  • Precise micropatterning of polypropylene film, which is highly transparent in the wavelength range over 250 nm has been demonstrated by 355 nm nano/picosecond laser and 785 nm femtosecond laser. Increments of both the pulse energy and the shot number of pulses lead to cooccurrence of photochemical and thermal effects, demonstrated by the spatial expansion of rim on the surface of PP. The shapes of the laser-ablated polypropylene films were imaged by optical microscope and measured by a 3D optical measurement system. And, the ablation depth and width of polypropylene film ablated by femtosecond laser at various pulse energy and pulse number were characterized. Our results demonstrate that a femtosecond pulsed laser is an efficient tool for fabricating micropatterns of polypropylene films, where the micropatterns are specifically tailored in size, location and number easily controlled by laser processing conditions.

Die and mold technology of in-mold labeling in functional packaging (기능성 생활용기 인 몰드 라벨링 금형 성형 기술)

  • Kim, Yu-Jin;Jung, Gui-Jae;Gong, Sung-Ho;Shin, Jang-Soon;Yoon, Gil-Sang;Jung, Woo-Chul;Kim, Gun-Hee;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.17-22
    • /
    • 2008
  • Recently, the demand of high-productivity injection mold increases since the consumption of packaging grows in the world. Stack mold is composed of more than two molds and it has very high productivity and economic efficiency. In advanced country, stack mold which has was developed already but, in occasion of domestic mold industry, there is no study of stack mold. In this study, die and mold of in-mold labeling was developed for securing the technique of manufacturing high-productivity mold.

  • PDF

Analytical Quantification and Effect of Microstructure Development in Thick Film Resistor Processing

  • Lee, Byung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.33-37
    • /
    • 2012
  • Microstructure developments of $RuO_2$ based thick film resistors during firing as a function of glass viscosity were analytically quantified and its effect on the electrical property was investigated. The microstructure development was retarded as the viscosity of glass was increased. It was found that the viscosity range for each stage of microstructure development are as follows ; $7500-10^5Pa{\cdot}s$ for the glass sintering, $2000-7500Pa{\cdot}s$ for the glass island formation, $700-2000Pa{\cdot}s$ for the glass spreading, and $50-700Pa{\cdot}s$ for the infiltration. The sheet resistivity decreased as the viscosity of glass in the resistor film increased due to the higher chance of sintering for the conductive particles with the higher viscosity of the glass.

3D Accuracy Enhancement of BGA Shiny Round Ball Using Optical Triangulation Method (광삼각법을 이용한 고반사 BGA 볼의 정밀 높이 측정 방법)

  • Joo, Byeong Gwon;Cho, Taik Dong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.799-805
    • /
    • 2015
  • The further development of information, communication and digital media technologies requires the use of advanced, miniaturized semiconductor chips that operate at a high frequency. Die bonding and wire bonding methods for semiconductor packaging have been replaced by direct attachment to the substrate after forming a bump on the chip. However, the height of the bump or ball is an important factor for defects during assembly. This paper proposes an algorithm to measure the height of the bumps or balls in semiconductor packaging with greater accuracy. The performance of the proposed algorithm is experimentally validated. Non-contact 3D measurements of a shiny round ball is quite difficult, and it is not easy to obtain accurate data. This paper thus proposes an optical method and technique to improve the measurement accuracy.