Browse > Article
http://dx.doi.org/10.6117/kmeps.2022.29.1.017

Technical Trends of Ti3C2TX MXene-based Flexible Electrodes  

Choi, Su Bin (School of Advanced Materials Engineering Jeonbuk National University)
Meena, Jagan Singh (School of Advanced Materials Engineering Jeonbuk National University)
Kim, Jong-Woong (School of Advanced Materials Engineering Jeonbuk National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.29, no.1, 2022 , pp. 17-33 More about this Journal
Abstract
Ti3C2TX MXene, first reported by Naguib et al. in 2011, has attracted tremendous attention due to its excellent hydrophilicity, electrical conductivity, and mechanical/chemical stability. Since MXene is a two-dimensional material with a thickness of few nanometers, which ensure its flexibility. In last few years, due to these properties many researchers used Ti3C2TX MXene into various fields such as flexible smart sensors, energy harvesting/storage devices, supercapacitors and electromagnetic interference shielding systems. In this review article, we have briefly discussed the various synthesis processes and characteristics of Ti3C2TX MXene. Moreover, we reviewed the latest development of Ti3C2TX MXene as flexible electrode material to be used into different applications.
Keywords
Flexible; $Ti_3C_2T_X$ MXene; electrode; sensor; battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Long, P. Wang, H. Fang and W. Hu, "Progress, Challenges, and Opportunities for 2D Material Based Photodetectors", Adv. Funct. Mater., 29(19), 1803807-1803807 (2019).   DOI
2 Y. P. V. Subbaiah, K. J. Saji and A. Tiwari, "Atomically Thin MoS2 : A Versatile Nongraphene 2D Material", Adv. Funct. Mater., 26(13), 2046-2069 (2016).   DOI
3 T. Tan, X. Jiang, C. Wang, B. Yao, and H. Zhang, "2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges", Adv. Sci., 7(11), 20000058-2000083 (2020)
4 S. Wang, S. Zhao, X. Guo, and G. Wang, "2D Material-Based Heterostructures for Rechargeable Batteries", Adv. Energy Mater., 12(4), 2100864-2100885 (2021).
5 A. Saha, N. Shpigel, Rosy, N. Leifer, S. Taragin, T. Sharabani, H. Aviv, I. Perelshtein, G. Daniel Nessim, M. Noked and Y. Gogotsi, "Enhancing the Energy Storage Capabilities of Ti3C2Tx MXene Electrodes by Atomic Surface Reduction", Adv. Funct. Mater., 31(52),2106294 -2106304(2020).
6 Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang, Y. Kamata, S. Hayase and T. Ma, "High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells", Small, 14(47), 1802738-1802746 (2018).   DOI
7 Y. Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G. Wang and Dianxue Cao, "Aggregation-Resistant 3D Ti3C2Tx MXene with Enhanced Kinetics for Potassium Ion Hybrid Capacitors", Adv. Funct. Mater., 30(50), 2005663-2005673 (2020).   DOI
8 Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong, J. Feng and Y. Qian, "Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries", ACS Nano, 13(10), 11676-11685 (2019).   DOI
9 L. Shi, H. Jin, S. Dong, S. Huang, H. Xu, J. Chen, W. Xuan, S. Zhang, S. Li, X. Wang and J. Luo, "High-performance triboelectric nanogenerator based on electrospun PVDFgraphene nanosheet composite nanofibers for energy harvesting", Nano Energy, 80, 105599-105610 (2021).   DOI
10 M. Naguib, M. W. Barsoum and Y. Gogotsi, "Ten Years of Progress in the Synthesis and Development of MXenes", Adv. Mater., 33(39), 2103393-2103403 (2021).   DOI
11 P. Kumar, S. Singh, S. A. R. Hashmi and K. H. Kim, "MXenes: Emerging 2D materials for hydrogen storage", Nano Energy, 85, 105989-106003 (2021).   DOI
12 Hao, J. Diao, M. Zhang, P. Zhu, Y. Liu, Y. Kuang and Gang Chen, "MXene-Based Conductive Organohydrogels with Long-Term Environmental Stability and Multifunctionality", Adv. Funct. Mater., 30(48), 2005135-2005146 (2020).   DOI
13 X. Luo, L. Zhu, Y. C. Wang, J. Li, J. Nie and Z. L. Wang, "A flexible multifunctional triboelectric nanogenerator based on MXene/PVA Hydrogel", Adv. Funct. Mater., 31(38), 2104928-2104937 (2021).   DOI
14 J. Liu, L. Zhang, N. Wang and C. Li, "Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor", Nano Energy, 78, 105385-105393 (2020).   DOI
15 J. Comea, J. M. Blacka, M. R. Lukatskayab, M. Naguibc, M. Beidaghib, A. J. Rondinonea, S. V. Kalinina, D. J. Wesolowskid, Y. Gogotsib and N. Balke, "Controlling the actuation properties of MXene paper electrodes upon cation intercalation", Nano Energy, 17, 27-35 (2015).   DOI
16 Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch, S. Abdolhosseinzadeh, J. Heier, F. Nuesch, C. Zhang and G. Nystrom, "Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance", Adv. Sci., 7(15), 2000979-2000986 (2020).   DOI
17 H. Tang, H. Feng, H. Wang, X. Wan, J. Liang and Y. Chen, "Highly Conducting MXene-Silver Nanowire Transparent Electrodes for Flexible Organic Solar Cells", ACS Appl. Mater. Interfaces, 11(28), 25330-25337 (2019).   DOI
18 X. Wang, T. S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N. C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon and Y. Gogotsi, "Influences from solvents on charge storage in titanium carbide MXenes", Nat. Energy, 4, 241-248 (2019).   DOI
19 L. Yu, L. Hu, B. Anasori, Y. T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi and B. Xu, "MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors", ACS Energy Lett., 3(7), 1597-1603 (2018).   DOI
20 B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, J. Ma, C. Liu and C. Shen, "Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance", ACS Appl. Mater. Interfaces, 12(36), 40859-40869 (2020).   DOI
21 L. Liao, D. Jiang, K. Zheng, M. Zhang and Jingquan Liu, "Industry-Scale and Environmentally Stable Ti3C2Tx MXene Based Film for Flexible Energy Storage Devices", Adv. Funct. Mater., 31(35), 2103960-2103970 (2021).   DOI
22 J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou and Z. Z. Yu, "Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding", Adv. Mater., 29(38), 1702367-1702373 (2017).   DOI
23 Y. Wei, L. Xiang, H. Ou, F. Li, Y. Zhang, Y. Qian, L.
24 J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva and Yury Gogotsi, "Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance", Adv. Funct. Mater., 27(30),1701264-1701274 (2017).   DOI
25 Y. Dong, H. Shi and Z. S. Wu, "Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries", 30(47), 2000706-2000730 (2020).   DOI
26 Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang, Q. Xiang, W. Chen, C. Liu, J. Luo and S. Yang, "MXene-Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors", Adv. Energy Mater., 10(9), 1903534-1903540 (2020).   DOI
27 Z. Xiao, Z. Li, X. Menga and R. Wang, "MXene-engineered lithium-sulfur batteries", J. Mater. Chem. A, 7, 22730-22743 (2019).   DOI
28 S. Yazdanparast, S. Soltanmohammad, A. F. White, G. J. Tucker and G. L. Brennecka, "Synthesis and Surface Chemistry of 2D TiVC Solid-Solution MXenes", ACS Appl. Mater. Interfaces, 12 (17), 20129-20137 (2020).   DOI
29 H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu and Chun Li, "Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength", Adv. Funct. Mater., 30(5), 1906996-1907003 (2020).   DOI
30 C. Zhang, B. Anasori, A. S. Ascaso, S. H. Park, N. McEvoy, A. Shmeliov, G. S. Duesberg, J. N. Coleman, Y. Gogotsi and V. Nicolosi, "Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance", Adv. Mater., 29(36), 1702678-1702687 (2017).   DOI
31 M. Guo, C. Liu, Z. Zhang, J. Zhou, Y. Tang and S. Luo, "Flexible Ti3C2Tx@Al electrodes with Ultrahigh Areal Capacitance: In Situ Regulation of Interlayer Conductivity and Spacing", Adv. Funct. Mater., 28(37), 1803196-1803205 (2018).   DOI
32 A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dionb and Y. Gogotsi, "Electrospun MXene/carbon nanofibers as supercapacitor electrodes", J. Mater. Chem. A, 7, 269-277 (2019).   DOI
33 L. Liu, G. Ying, C. Hu, K. Zhang, F. Ma, L. Su, C. Zhang and C. Wang, "Functionalization with MXene (Ti3C2) Enhances the Wettability and Shear Strength of Carbon Fiber-Epoxy Composites", ACS Appl. Mater. Interfaces, 2(9), 5553-5562 (2019).
34 Q. Li, R. Yin, D, Zhang, H. Liu, X. Chen, Y. Zheng, Z. Guo, C. Liu and C. Shen, "Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors", J. Mater. Chem. A, 8, 21131-21141 (2020).   DOI
35 Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan, L. He and B. Xu, "Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries", Small, 15(51), 1904293-1904302 (2019).   DOI
36 W. Chen, L. X. Liu, H. B. Zhang and Z. Z. Yu, "Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding", ACS Nano, 14(12), 16643-16653 (2020).   DOI
37 Q. W. Wang. H. B. Zhang, J. Liu, S. Zhao, X. Xie, L. Liu, R. Yang, N. Koratkar and Z. Z. Yu, "Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances", Adv. Funct. Mater., 29 (7), 1806819-1806829 (2019).   DOI
38 W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and Feng Chen, "Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties", ACS Nano, 12 (5), 4583-4593 (2018).   DOI
39 M. Peng, L. Wang, L. Li, X. Tang, B. Huang, T. Hu, K. Yuan, and Y. Chen, "Manipulating the Interlayer Spacing of 3D MXenes with Improved Stability and Zinc-Ion Storage Capability", Adv. Funct. Mater., 32(7), 2109524-2109534 (2021).
40 Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei and J. Gu, "Ultraflexible and Mechanically Strong DoubleLayered Aramid Nanofiber-Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding", ACS Nano, 14(7), 8368-8382 (2020).   DOI
41 D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang, L. Zhao, W. Han, K. Jiang and G. Shen, "Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors", Nano Energy, 78, 105252-105260 (2020).   DOI
42 H. Huang, H. Shi, P. Das, J. Qin, Y. Li, X. Wang, F. Su, P. Wen, S. Li, P. Lu, F. Liu, Y. Li, Y. Zhang, Y. Wang, Z. S. Wu, and H. M. Cheng, "The Chemistry and Promising Applications of Graphene and Porous Graphene Materials", Adv. Funct. Mater., 30(41), 1909035-1909074 (2020).   DOI
43 Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, and J. Qiu, "Sustainable Synthesis and Assembly of Biomass-Derived B/N Co-Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High-Performance Supercapacitors", Adv. Funct. Mater., 26(1), 111-119 (2016).   DOI
44 M. R. Rosenberger, H. J. Chuang, K. M. McCreary, A. T. Hanbicki, S. V. Sivaram, and B. T. Jonker, "Nano-Squeegee" for the Creation of Clean 2D Material Interfaces", ACS Appl. Mater. Interfaces, 10(12), 10379-10387 (2018).   DOI
45 G. A. Muller, J. B. Cook, H. S. Kim, S, H. Tolbert and B. Dunn, "High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals", Nano Lett., 15(3), 1911-1917 (2015).   DOI
46 H. Zhu, F. Zhang, J. Li, and Y. Tang, "Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based DualIon Battery", Small, 14(13), 1703951-1703958 (2018).   DOI
47 H. Zhanga, R. Sua, L. Shi, D. J. O'Connor and H. Wen, "Structural changes of Ti3SiC2 induced by helium irradiation with different doses", Appl. Surf. Sci., 434, 1210-1216 (2018).   DOI
48 H. Wang, J. Li, X. Kuai, L. Bu, L. Gao, X. Xiao and Y. Gogotsi, "Enhanced Rate Capability of Ion-Accessible Ti3C2Tx-NbN Hybrid Electrodes", Adv. Energy Mater., 10(35), 2001411-2001419 (2020).   DOI
49 X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang, J. Wang, L. Zhang, X. Li, Z. Xiao, Q. Zhao, Y. Pei, G. Wang, C. Qin, H. Li, J. Lou, Q. Liu and Peng Zhou, "A New Memristor with 2D Ti3C2Tx MXene Flakes as an Artificial Bio-Synapse", Small, 15(25), 1900107-1900116 (2019).   DOI
50 C. Zhang, S. J. Kim, M. Ghidiu, M. Q. Zhao, M. W. Barsoum, V. Nicolosi and Y. Gogotsi, "Layered Orthorhombic Nb2O5@ Nb4C3TxandTiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries", Adv. Funct. Mater., 26(23), 4143-4151 (2016).   DOI
51 J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund and M. W. Barsoum, "Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films", Chem. Mater., 26(7), 2374-2381 (2014).   DOI
52 M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin and Y. Gogotsi, "Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)", Chem. Mater., 29(18), 7633-7644 (2017).   DOI
53 C. Y. Wang, Z. J. Zheng, Y. Q. Feng, H. Ye, F. F. Cao and Z. P. Guo, "Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries", Nano Energy, 74, 104817-104825 (2020).   DOI
54 J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. Han, W. Yang, J. Liu, X. Wang, Y. Gogotsi and J. M. Razal, "Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity", Adv. Mater., 32(23), 2001093-2001102 (2020).   DOI
55 A. L. B. Jackson, M. Falmbigl, K. Hantanasirisakul, Z. Gu, D. Imbrenda, A. V. Plokhikh, A. W. Cole, C. Hatter, L. Wu, B. Anasori, Y. Gogotsi and J. E. Spanier, "van der Waals epitaxy of highly (111)-oriented BaTiO3 on MXene", Nanoscale, 11(2), 622-630 (2019).   DOI
56 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2", Adv. Mater., 23(37), 4248-4253 (2011).   DOI
57 X. Feng, J. Ning, B. Wang, H. Guo, M. Xia, D. Wang, J. Zhang, Z. S. Wu, and Y. Hao, "Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene", Nano Energy, 72, 104741-104750 (2020).   DOI
58 J. Choi, Y. J. Kim, S. Y. Cho, K. Park, H. Kang, S. J. Kim and H. T. Jung, "In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and its Application in Highly Sensitive Gas Sensors" Adv. Funct. Mater., 30(40), 2003998-2004007 (2020).   DOI
59 X. Luo, L. Zhu, Y. C. Wang, J. Li, J. Nie and Z. L. Wang, "A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel", Adv. Funct. Mater., 31(38), 2104928-2104937 (2021).   DOI
60 H. Liao, X. Guo, P. Wan and G. Yu, "Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors", Adv. Funct. Mater., 29(39), 1904507-1904516 (2019).   DOI
61 G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi and A. D. Taylor "Layer-by-Layer Assembly of Cross-Functional Semi-transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding", Adv. Funct. Mater., 28(44),1803360-1803369 (2018).   DOI