Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.3.071

A Comparison Study on Various Quantum Dots Light Emitting Diodes Using TiO2 Nanoparticles as Inorganic Electron Transport Layer  

Kim, Moonbon (Department of Advanced Materials Engineering, Kyonggi University)
Yoon, Changgi (Department of Advanced Materials Engineering, Kyonggi University)
Kim, Jiwan (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.3, 2019 , pp. 71-74 More about this Journal
Abstract
In this study, we fabricated two standard and inverted quantum dot light emitting diodes (QLEDs) using $TiO_2$ nanoparticles (NPs) with lower electron mobility than ZnO NPs as inorganic electron transport layer to suppress electron injection into the emitting layer. Current density was much higher for the inverted QLEDs than the standard ones. The inverted QLEDs were brighter, but showed low current efficiency due to the high current density. In addition, as the current density was higher, the driving voltage was higher, and the red shift was confirmed in the emission wavelength spectrum. The low current density in the standard structured devices showed that the possibility that $TiO_2$ NPs could suppress the electron injection in the QLEDs.
Keywords
$TiO_2$ NPs; Quantum dots; Electron transport layer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, "Stable and efficient quantum-dot light-emitting diodes based on solutionprocessed multilayer structures", Nat. Photonics., 5, 543 (2011).   DOI
2 W. Han, and H. H. Park, "The Effect of Crystallinity on the Photoluminescence of $TiO_2$ Nanoparticles", J. Microelectron Packag. Soc., 26(1), 23 (2019).   DOI
3 J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, "Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs", ACS Photonics, 3, 215 (2016).   DOI
4 X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, "Solution-processed, highperformance light-emitting diodes based on quantum dots", Nature, 515, 96 (2014).   DOI
5 K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, "High-performance crosslinked colloidal quantum-dot lightemitting diodes", Nat. Photonics., 3, 341 (2009).   DOI
6 L. Yan, J. Y. Zhang, Y. Cui, and Y. Qiao, "Voltage-dependent electroluminescence from colloidal CdSeZnS quantum dots", Appl. Phys. Lett., 91, 243114 (2007).   DOI
7 J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays", Opt. Mater. Express., 2, 594, (2012).   DOI
8 V. Colivn, M. Schlamp, and A. P. Alivisatos, "Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer", Nature, 370, 354 (1994).   DOI
9 K. H. Lee, J. H. Lee, W. S. Song, Ko, C. Lee, J. H. Lee, and H. Yang, "Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices", ACS Nano, 7, 7295, (2013).   DOI
10 K. M. Kang, Y. Wang, M. Kim, H. S. Lee, and H. H. Park, "The Structural, Electrical, and Optical Properties of ZnO Ultra-thin Films Dependent on Film Thickness", J. Microelectron Packag. Soc., 26(2), 15 (2019).   DOI
11 S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen, and Z. Du, "Bandgap tunable Zn1-xMgxO thin films as electron transport layer for high performance quantum dot light-emitting diodes", J. Mater. Chem. C., 5, 4724 (2017).   DOI
12 X. Jin, C. Chang, W. Zhao, S. Huang, X. Gu, Q. Zhang, F. Li, Y. Zhang, and Q. Li, "Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron blocking layer", ACS Appl. Mater. Interfaces., 10, 15803 (2018).   DOI
13 L. Wang, J. Pan, J. Qian, W. Lei, Y. Wu, W. Zhang, D. K. Goto, and J. Chen, "A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers", J. Mater. Chem. C., 6(30), 8099 (2018).   DOI