• 제목/요약/키워드: advanced driver assistance system (ADAS)

검색결과 68건 처리시간 0.026초

종방향 능동안전장치의 평가기준 연구 (Study for Evaluation Standard of Longitudinal Active Safety System)

  • 장현익;용부중;조성우;최인성;민경찬;김규현
    • 자동차안전학회지
    • /
    • 제4권1호
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

라즈베리파이와 OpenCV를 활용한 선형 검출 알고리즘 구현 (Implementation of Linear Detection Algorithm using Raspberry Pi and OpenCV)

  • 이성진;최준형;최병윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.637-639
    • /
    • 2021
  • 자율주행 연구가 활발히 진행되면서 ADAS(Advanced Driver Assistance System)에서 차량의 위치를 파악하고 경로를 유지하는데 차선 검출은 필수적인 기술이다. 차선 검출은 허프 변환과 RANSAC(Random Sample Consensus)과 같은 영상처리 알고리즘을 이용하여 검출한다. 본 논문은 라즈베리파이3 B+에 OpenCV를 이용하여 선형 도형 검출 알고리즘을 구현하고 있다. OpenCV 가우시안 블러 구조와 캐니 에지 검출을 통해 문턱값을 설정하였고, 선형 검출 알고리즘을 통한 차선 인식에 성공하였다.

  • PDF

선택적 주의집중 모델과 YOLO를 이용한 선행 차량 정지등 검출 시스템 구현 (Implementation of Preceding Vehicle Break-Lamp Detection System using Selective Attention Model and YOLO)

  • 이우범
    • 융합신호처리학회논문지
    • /
    • 제22권2호
    • /
    • pp.85-90
    • /
    • 2021
  • 운전자의 안전 운전을 위한 첨단 운전자 보조시스템(ADAS; Advanced Driver Assistance System)은 자율주행 자동차에서 중요한 연구 분야 가운데 하나이다. 특히, 이전에 자동차에 부착된 영상센서를 기반으로 한 ADAS 소프트웨어는 구축 비용이 저렴하고 그 활용도가 우수하다. 본 논문에서는 선행차의 주행 상황을 인지할 수 있는 선행 차량 후미등(Tail-Lamp)의 정지등(Break-Lamp) 영역을 검출하는 알고리즘을 제안한다. 제안하는 방법은 주행 영상으로부터 객체 추적에 우수한 성능을 보이고 있는 YOLO 기술을 이용하여 자동차 객체를 추출하고, 추출된 자동차 관심 영역의 HSV 영상을 이용하여 정지등의 밝기 변화 영역을 검출한다. 그 다음 검출된 각 정지등 후보 고립영역을 라벨링하여 후보 영역들 간의 모양 대칭성을 인지하는 선택적 주의집중 모델(Selective Attention Model)을 적용하여 정지등 영역을 검출한다. 제안한 알고리즘의 성능 평가를 위하여 다양한 주행 영상에 적용하여 실험한 결과 ADAS에 적용 가능한 성공적인 검출 결과를 보였다.

첨단안전장치 장착 버스의 사고사례 분석 (Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS))

  • 박종진;최영수;박정만
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

방향지시등 제어를 위한 운전자 지원 시스템 (Advanced Driver Assistance System for the Control of Turn Signal Indicator)

  • 김대순
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.143-148
    • /
    • 2018
  • 본 논문에서는 자동으로 차량의 방향지시등 점멸 기능을 제어할 수 있는 새로운 방식의 방향지시등 제어 시스템을 제안한다. 차량의 진행 방향에 대한 운동 모멘텀을 인식하기 위한 모션 인식 센서를 채용하여, 제안된 방식의 ADAS 시스템은 차선 변경시 운전자가 방향지시등 레버를 조작하지 않을 경우에 차량의 진행 방향을 감지하여 자동으로 방향지시등의 점멸을 제어하도록 개입할 수 있다. 제안된 제어 시스템은 오토바이 실차에 장착되어 운전자의 안전을 위한 운전자 지원 시스템(ADAS) 으로서의 기능을 확인하였다.

운전자 안정성 향상을 위한 Generative Adversarial Network 기반의 야간 도로 영상 변환 시스템 (Night-to-Day Road Image Translation with Generative Adversarial Network for Driver Safety Enhancement)

  • 안남현;강석주
    • 방송공학회논문지
    • /
    • 제23권6호
    • /
    • pp.760-767
    • /
    • 2018
  • 첨단 운전자 지원 시스템(ADAS)은 차량 기술 분야에서 활발한 연구가 이루어지고 있는 기술이다. ADAS 기술은 직접적으로 차량을 제어하는 기술과 간접적으로 운전자에게 편의를 제공하는 기술로 나뉜다. 본 논문에서는 야간 도로 영상을 보정하여 운전자에게 시각적 편의를 제공하는 시스템을 제안한다. 제안하는 시스템은 전방 블랙박스 카메라로부터 촬영된 도로 영상을 입력받는다. 입력된 영상은 가로 축을 따라 세 부분으로 분할된 뒤 일괄적으로 이미지 변환 모듈을 통해 각각 낮 영상으로 변환된다. 변환된 영상은 다시 결합된 뒤 운전자에게 제공되어 시각적 편의를 제공한다. 본 논문의 실험 결과를 통해 제안한 시스템이 기존의 밝기 변환 알고리즘과 비교하여 우수한 성능을 보임을 입증한다.

Prescan을 활용한 ADAS 차량의 AEBS에 대한 사고 재현 시뮬레이션 연구 (A Study on the Accident Reconstruction Simulation about AEBS of ADAS Vehicle using Prescan)

  • 김종혁;이재형;김송희;최지훈;전우정
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.23-31
    • /
    • 2023
  • In recent years, the technology for autonomous driving has been advancing rapidly, ADAS (Advanced Driver Assistance System) functions, which improve driver convenience and safety performance, are mostly equipped in recently released vehicles and range from level 0 to level 2 in autonomous driving technology. Among the various functions of ADAS, AEBS (Autonomous Emergency Braking System), which analyzes traffic accidents, is the most closely related to the vehicle's braking. This study developed a simulation technique for reproducing accidents related to AEBS based on real vehicle experimental data, and it was applied to the analysis of actual ADAS vehicle accidents to identify the causes of accidents.

지능형 운전보조시스템을 위한 IMM 기법을 이용한 전방차량 거동추정기법 (Neighboring Vehicle Maneuver Detection using IMM Algorithm for ADAS)

  • 정선휘;이운성;강연식
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.718-724
    • /
    • 2013
  • In today's automotive industry, there exist several systems that help drivers reduce the possibility of accidents, such as the ADAS (Advanced Driver Assistance System). The ADAS helps drivers make correct and quick decisions during dangerous situations. This study analyzed the performance of the IMM (Interacting Multiple Model) method based on multiple Kalman filters using the data acquired from a driving simulator. An IMM algorithm is developed to identify the current discrete state of neighboring vehicles using the sensor data and the vehicle dynamics. In particular, the driving modes of the neighboring vehicles are classified by the cruising and maneuvering modes, and the transition between the states is modeled using a Markovian switching coefficient. The performance of the IMM algorithm is analyzed through realistic simulations where a target vehicle executes sudden lane change or acceleration maneuver.

A Study on Traffic Light Detection (TLD) as an Advanced Driver Assistance System (ADAS) for Elderly Drivers

  • Roslan, Zhafri Hariz;Cho, Myeon-gyun
    • International Journal of Contents
    • /
    • 제14권2호
    • /
    • pp.24-29
    • /
    • 2018
  • In this paper, we propose an efficient traffic light detection (TLD) method as an advanced driver assistance system (ADAS) for elderly drivers. Since an increase in traffic accidents is associated with the aging population and an increase in elderly drivers causes a serious social problem, the provision of ADAS for older drivers via TLD is becoming a necessary(Ed: verify word choice: necessary?) public service. Therefore, we propose an economical TLD method that can be implemented with a simple black box (built in camera) and a smartphone in the near future. The system utilizes a color pre-processing method to differentiate between the stop and go signals. A mathematical morphology algorithm is used to further enhance the traffic light detection and a circular Hough transform is utilized to detect the traffic light correctly. From the simulation results of the computer vision and image processing based on a proposed algorithm on Matlab, we found that the proposed TLD method can detect the stop and go signals from the traffic lights not only in daytime, but also at night. In the future, it will be possible to reduce the traffic accident rate by recognizing the traffic signal and informing the elderly of how to drive by voice.

첨단운전자보조시스템용 이동객체검출을 위한 광학흐름추정기의 설계 및 구현 (Design and Implementation of Optical Flow Estimator for Moving Object Detection in Advanced Driver Assistance System)

  • 윤경한;정용철;조재찬;정윤호
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.544-551
    • /
    • 2015
  • 본 논문에서는 첨단 운전자 보조 시스템 (ADAS; advanced driver assistance system) 용 이동객체검출 (MOD; moving object detection)을 위한 광학흐름추정기 (OFE; optical flow estimator) 의 하드웨어 구조 설계 결과를 제시하였다. 광학흐름추정 알고리즘은 차량 환경에서 높은 정확도를 나타내는 광역 최적화 (global optimization) 기반 Brox 알고리즘을 적용하였다. Brox 알고리즘의 에너지 범함수 (energy functional)를 최소화 하는 과정에서 생성되는 Euler-Lagrange 방정식을 풀기 위해 하드웨어 구현에 용이한 Cholesky factorization이 적용되었으며, 메모리 접근율 (memory access rate)를 줄이기 위해 시프트 레지스터 뱅크 (shift register bank)를 도입하였다. 하드웨어 구현은 Verilog-HDL을 사용하였으며, FPGA 기반 설계 및 검증이 수행되었다. 제안된 광학흐름추정기는 40.4K개의 logic slice 및 155개의 DSP48s, 11,290 Kbit의 block memory로 구현되었다.