• Title/Summary/Keyword: adsorption removal

Search Result 1,342, Processing Time 0.027 seconds

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

Filtration Performance in MSBR (Membrane-Coupled Sequencing Batch Reactor) using a Membrane for Both Filtration and Aeration (막결합형 연속회분식 생물반응조에서 여과 및 공기공급용으로 분리막을 사용할 때 공기공급이 막여과 성능에 미치는 영향)

  • Ryu, Kwan-Young;Park, Pyung-Kyu;Lee, Chung-Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.337-346
    • /
    • 2005
  • An MSBR using a membrane for not only filtration but also aeration (MA-MSBR) was designed to reduce membrane fouling and to enhance water quality, and compared with an MSBR using a membrane for only filtration (BA-MSBR). COD removal efficiency of the MA-MSBR was similar to that of the BA-MSBR, but membrane performance of the MA-MSBR was better than that of the BA-MSBR. The MA-MSBR had more small particles in mixed liquor, so the specific cake resistance of flocs in the MA-MSBR was higher than that in the BA-MSBR. However, in the aerobic reaction step of the MA-MSBR, air went through membrane pores and out of the membrane surface, so cake layers on the membrane surface and a portion of organics adsorbed on membrane pores could be removed periodically. Therefore, cake resistance, $R_c$, and fouling resistance by adsorption and blocking, $R_f$, for the MA-MSBR increased more slowly than those for the BA-MSBR. Additionally, in order to compare the energy efficiency for two MSBRs, oxygen transfer efficiency and power to supply air into the reactor by a membrane module and a bubble stone diffuser were measured using deionized water. From these measurements, the transferred oxygen amount per unit energy was calculated, resulting that of MA-MSBR was slightly higher than that of BA-MSBR.

Adsorption characterisctics of mixed resins for perchlorate ion (혼합수지를 이용한 과염소산 이온의 흡착 특성)

  • Park, Su-Min;Jeon, Byong-Hun;Jeong, Hyuk;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • The present research evaluates the efficiency of mixed resins between anion exchange resin and active carbon. We expected synergic effect from advantages of both adsorbents. Especially, this research focused on the removal of high cencentrated perchlorate ion from demilitarization solution. The total amount of the adsorbed perchlorate ion is increased considerably with mixed resins between mono functional anion exchange resin and granular active carbon from a single adsorbent. Results demonstated that this process not only improve the efficiency of adsorbing perchlorate, but save the time, space and cost for treating perchlotrate waste solution, because of reducing organic contaminant removing process. The interference effects from coexisting anions are not significant and can successfully applied to real demilitarization sample.

Low temperature preparation of Pt alloy electrocatalysts for DMFC

  • Song, Min-Wu;Lee, Kyeong-Seop;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.171-171
    • /
    • 2009
  • The electrodes are usually made of a porous mixture of carbon-supported platinum and ionomers. $SnO_2$ particles provide as supports that have been used for DMFCs, and it have high catalytic activities toward methanol oxidation. The main advantage of $SnO_2$ supported electrodes is that it has strong chemical interactions with metallic components. The high activity to a synergistic bifunctional mechanism in which Pt provides the adsorption sites for CO, while oxygen adsorbs dissociative on $SnO_2$. The reaction between the adsorbed species occurs at the Pt/$SnO_2$ boundary. The morphological observations were characterized by FESEM and transmission electron microscopy (TEM). $SnO_2$ particles crystallinity was analyzed by the X-ray diffraction (XRD). The surface bonded state of the $SnO_2$ particles and electrode materials were observed by the X-ray photoelectron spectroscopy (XPS). The electric properties of the Pt/$SnO_2$ catalyst for methanol oxidation have been investigated by the cyclic voltametry (CV) in 0.1M $H_2SO_4$ and 0.1M MeOH aqueous solution. The peak current density of methanol oxidation was increased as the $SnO_2$ content in the anode catalysts increased. Pt/$SnO_2$ catalysts improve the removal of CO ads species formed on the platinum surface during methanol electro-oxidation.

  • PDF

Removal of pentachlorophenol by pentachlorophenol resistant strains isolated from activated sludge (활성오니에서 분리한 pentachlorophenol 내성균주의 pentachlorophenol 제거에 관한 연구)

  • Park, Yun-Hee;Cho, Sung-Eun;Lee, Woo-Sang;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 1992
  • Twenty strains of pentachlorophnol (PCP) resistant bacteria were isolated from activated sludge of the sewage treatment plant of Jung Lang Chun, Seoul. The predominant strains were Bacillus spp. including B. sphaericus and E. schlegelii. The other strains were identified as Corynebacterium spp., Staphylococcus aureus, Arthrobacter spp. and Aeromonas spp. The resistant strains could be grouped into two categories; PCP-degrading and PCP-adsorbing/absorbing ones. PCP-degrading strains degraded $75{\sim}90%$ of PCP in the medium containing 100 ppm PCP during the first 24 hours of growth. At the initial period the PCP-adsorbing/absorbing strains removed PCP from the medium but started to release PCP after 24 or 72 hours of growth. PCP degradation products from the culture broth of PCP-degrading strains were identified by comparing their $R_f$ values with those of the reference compounds. 2-chlorophenol and 2.4-dichlorophenol were presumed to be the intermediate products of PCP degradation.

  • PDF

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Biological Fixation of $CO_2$ by Chlorella sp. HA-1 in a Semi-Continuous and Series Reactor System

  • LEE JAE-YOUNG;KWON TAE-SOON;BAEK KITAE;YANG JI-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.461-465
    • /
    • 2005
  • Characteristics of biological $CO_2$ fixation by Chlorella sp. HA-1 were investigated in a semi-continuous and series reactor system using an internally illuminated photobioreactor to overcome shortcomings of physicochemical technologies such as adsorption and membrane separation. High $CO_2$ fixation rate was achieved in the semi-continuous reactor system, in which the dilution ratios of the culture medium were controlled. The average $CO_2$ fixation rate was maintained almost constantly when the dilution ratio increased by 0.1 increment from the initial value of 0.5. The total removal efficiency of $CO_2$ was enhanced by employing a series reactor system. The average $CO_2$ fixation rate increased until 4.013 g $CO_2\;day^{-1}$ in a series operation of four reactors, compared to 0.986 g $CO_2\;day^{-1}$ in a batch operation mode. The total $CO_2$ fixation rate was proportional to the number of reactors used in the series reactor system. In the series reactor system of semi-continuous operation, a large amount of $CO_2$ was removed continuously for 30 days. These results showed that the present reactor systems are efficient and economically feasible for a biological $CO_2$ fixation.

Carbon Electrodes in Capacitive Deionization Process (정전기적 흡·탈착 공정에서의 탄소 전극)

  • Chung, Sangho;Lee, Jae Kwang;Ocon, Joey D.;Son, Young-Il;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.346-351
    • /
    • 2014
  • With the world population's continuous growth and urban industrialization, capacitive deionization (CDI) has been proposed as a next-generation water treatment technology to augment the supply of water. As a future water treatment method, CDI attracts significant attention because it offers small energy consumption and low environmental impact in comparison to conventional methods. Carbon electrodes, which have large surface area and high conductivity, are mainly used as electrode materials of choice for the removal of ions in water. A variety of carbon materials have been investigated, including their adsorption-desorption behavior in accordance to the specific surface area and pore size distribution. In this review, we analyzed and highlighted these carbon materials and looked at the impact of pore size distribution to the overall CDI efficiency. Finally, we propose an optimal condition in the interplay between micropores and mesopores in order to provide the best electrosorption property for these carbon electrodes.

A Study on the Reaction Characteristics of the NH3 Oxidation over W/TiO2 (W/TiO2 촉매의 NH3 단독 산화 반응 특성 연구)

  • Kim, Geo Jong;Lee, Sang Moon;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.645-649
    • /
    • 2013
  • In this study, we investigated the $NH_3$ oxidation reaction characteristic over $W/TiO_2$ catalyst in order to control $NH_3$ generated from a thermoelectric power plant or incinerator. As a result, it was found that the optimal content of tungsten in $W/TiO_2$ catalyst is 10 wt% and $NH_3$ removal efficiency decreased due to decreasing specific surface areas of catalyst with increasing tungsten contents. When $NH_3$ was injected more than 420 ppm, $NH_3$ conversion decreased at the middle temperature range. In addition, $NH_3$ conversion decreased due to the competitive adsorption of moisture and with increasing oxygen concentration, the $NH_3$ conversion increased while the $N_2$ selectivity decreased.

Photocatalysis of TiO2/WO3 Composites Synthesized by Ball Milling (볼밀을 이용한 TiO2/WO3 복합체 제조 및 광촉매 특성)

  • Yu, Su-Yeol;Nam, Chunghee
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.316-321
    • /
    • 2018
  • Composites of P25 $TiO_2$ and hexagonal $WO_3$ nanorods are synthesized through ball-milling in order to study photocatalytic properties. Various composites of $TiO_2/WO_3$ are prepared by controlling the weight percentages (wt%) of $WO_3$, in the range of 1-30 wt%, and milling time to investigate the effects of the composition ratio on the photocatalytic properties. Scanning electron microscopy, x-ray diffraction, and transmission electron microscopy are performed to characterize the structure, shape and size of the synthesized composites of $TiO_2/WO_3$. Methylene blue is used as a test dye to analyze the photocatalytic properties of the synthesized composite material. The photocatalytic activity shows that the decomposition efficiency of the dye due to the photocatalytic effect is the highest in the $TiO_2/WO_3$ (3 wt%) composite, and the catalytic efficiency decreases sharply when the amount of $WO_3$ is further increased. As the amount of $WO_3$ added increases, dye-removal by adsorption occurs during centrifugation, instead of the decomposition of dyes by photocatalysts. Finally, $TiO_2/WO_3$ (3 wt%) composites are synthesized with various milling times. Experimental results show that the milling time has the best catalytic efficiency at 30 min, after which it gradually decreases. There is no significant change after 1 hour.