Browse > Article
http://dx.doi.org/10.14478/ace.2014.1080

Carbon Electrodes in Capacitive Deionization Process  

Chung, Sangho (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Lee, Jae Kwang (Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST))
Ocon, Joey D. (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Son, Young-Il (Korea Environmental Industry & Technology Institute)
Lee, Jaeyoung (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Applied Chemistry for Engineering / v.25, no.4, 2014 , pp. 346-351 More about this Journal
Abstract
With the world population's continuous growth and urban industrialization, capacitive deionization (CDI) has been proposed as a next-generation water treatment technology to augment the supply of water. As a future water treatment method, CDI attracts significant attention because it offers small energy consumption and low environmental impact in comparison to conventional methods. Carbon electrodes, which have large surface area and high conductivity, are mainly used as electrode materials of choice for the removal of ions in water. A variety of carbon materials have been investigated, including their adsorption-desorption behavior in accordance to the specific surface area and pore size distribution. In this review, we analyzed and highlighted these carbon materials and looked at the impact of pore size distribution to the overall CDI efficiency. Finally, we propose an optimal condition in the interplay between micropores and mesopores in order to provide the best electrosorption property for these carbon electrodes.
Keywords
carbon electrode; pore structure; surface area; capacitive deionization; water treatment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013).   DOI
2 J. W. Blair and G. W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area, in Saline Water Conversion, American Chemical Society, Washington, D. C., Vol. 27, Chap. 20 (1960).
3 G. W. Murphy and D. D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12, 1655-1664 (1967).   DOI
4 G. W. Murphy and J. L. Cooper, Activated carbon used as electrodes in electrochemical demineralization of saline water, U.S. Dept. of the Interior, Washington, D. C. (1969).
5 S. Evans, M. A. Accomazzo, and J. E. Accomazzo, Electrochemically controlled ion exchange: I. Mechanism electrochemical technology, J. Electrochem. Soc., 116, 307-309 (1969).   DOI
6 Y. Oren, A. Soffer, Electrochemical parametric pumping electrochemical science and technology, J. Electrochem. Soc., 125, 869-875 (1978).   DOI
7 J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, in Low Level Waste Conference, Orlando (1995).
8 D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, and J. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, J. Mater. Chem., 22, 14696-14704 (2012).   DOI
9 J. H. Lee and J. H. Choi, The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 409, 251-256 (2012).
10 K. Dermentzis, Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization, J. Hazard. Mater., 173, 647-652 (2010).   DOI
11 S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010).   DOI   ScienceOn
12 J. H. Yeo and J. H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode, Desalination, 320, 10-16 (2013).   DOI
13 J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everet, J. H. Haynes, N. Pernicone, J. Ramsay, K. S. W. Sing, and K. K. Unger, Recommendations for the characterization of porous solids, Pure Appl. Chem., 66, 1739-1758 (1994).
14 L. Zou, G. Morris, and D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination, 225, 329-340 (2008).   DOI   ScienceOn
15 M. W. Ryoo, J. H. Kim, and G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid. Interf. Sci., 264, 414-419 (2003).   DOI   ScienceOn
16 X. Z. Wang, M. G. Li, R. M. Cheng, S. M. Huang, and L. K. Pan, Electrochem. Solid-State Lett., 9, E23-E26 (2006).   DOI
17 J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196, 125-134 (2006).   DOI   ScienceOn
18 O. Barbieria, M. Hahna, A. Herzogb, and R. Kotza, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 1303-1310 (2005).   DOI   ScienceOn
19 D. Lee and J. Park, Mesoporous carbon electrodes for capacitive deionization, J. Korean Electrochem. Soc., 17, 57-64 (2014).   과학기술학회마을   DOI
20 S. Chung, T. N. Tuan, J. K. Lee, and J. Lee, Ultrathin metal oxide coated mesoporous carbon material for enhanced capacitive deionization, The International Conference on Interfaces against Pollution (IAP), titled Interfaces in Water and Environmental Science; a special Symposium on Capacitive Deionization (CDI), Leeuwarden, Netherlands, 78 (2014).
21 S. Jeon, H. Park, J. Yeo, S. C. Yang, C. H. Cho, M. H. Han, and D. K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6, 1471-1475 (2013).   DOI   ScienceOn
22 H. Li, L. Zou, L. Pan, and Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol., 44, 8692-8697 (2010).   DOI   ScienceOn
23 D. Zhang, L. Shi, J. Fang, K. Dai, and X. Li, Preparation and desalination performance of multiwall carbon nanotubes, Mater. Chem. Phys., 97, 415-419 (2010).
24 G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, and Z. Zhao, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta., 69, 65-70 (2012).   DOI
25 Z. Peng, D. S. Zhang, L. Y. Shi, T. T. Yan, S. A. Yuan, and H. R. Li, Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures, J. Phys. Chem. C, 115, 17068-17076 (2011).   DOI
26 H. J. Oh, J. H. Lee, H. J. Ahn, Y. Jeong, Y. J. Kim, and C. S. Chi, Nanoporous activated carbon cloth for capacitive deionization of aqueous solution, Thin Solid Films, 515, 220-225 (2006).   DOI   ScienceOn
27 J. Li, X. Wang, Q. Huang, S. Gamboa, and P. J. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor, J. Power Sources, 158, 784-788 (2006).   DOI   ScienceOn
28 H. J. Oh, J. H. Lee, H. J. Ahn, Y. Jeong, Y. J. Kim, and C. S. Chi, Nanoporous activated carbon cloth for capacitive deionization of aqueous solution, Thin Solid Films, 515, 220-225 (2006).   DOI   ScienceOn
29 P. Xu, J. E. Drewes, D. Heil, and G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42, 2605-2617 (2008).   DOI   ScienceOn
30 C. Kim, J. Lee, S. Kim, and J. Yoon, $TiO_2$ sol-gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization, Desalination, 342, 70-74 (2014).   DOI
31 B. B. Arnold and G. W. Murphy, Studies on the chemistry of carbon and chemically-modified carbon surfaces, J. Phys. Chem., 65, 135-138 (1961).   DOI