When analyzing default predictions in real estate companies, the number of non-defaulted cases always greatly exceeds the defaulted ones, which creates the two-class imbalance problem. This lowers the ability of prediction models to distinguish the default sample. In order to avoid this sample selection bias and to improve the prediction model, this paper applies a minority sample generation approach to create new minority samples. The logistic regression, support vector machine (SVM) classification, and neural network (NN) classification use an imbalanced dataset. They were used as benchmarks with a single prediction model that used a balanced dataset corrected by the minority samples generation approach. Instead of using prediction-oriented tests and the overall accuracy, the true positive rate (TPR), the true negative rate (TNR), G-mean, and F-score are used to measure the performance of default prediction models for imbalanced dataset. In this paper, we describe an empirical experiment that used a sampling of 14 default and 315 non-default listed real estate companies in China and report that most results using single prediction models with a balanced dataset generated better results than an imbalanced dataset.
Journal of the Korean Society for information Management
/
v.39
no.1
/
pp.195-217
/
2022
SIARD_KR is an administrative information dataset preservation tool. It is a partially modified version of SIARD, technology used for long-term preservation of relational databases developed by the Swiss Federal Archives, to suit Korea's situation better. Previous studies have focused on how SIARD is able to effectively extract all data contained in the relational database without loss. However, not all data contained in the database is meaningful information, that is, an administrative information dataset. This paper began, therefore, with the awareness of the problem of whether SIARD_KR reflects the characteristics of the administrative information dataset. SIARD_KR is not only a tool for extracting data stored in the DB. We want to see if it is capable of identifying and extracting only meaningful information, and maintaining meaningful information, even if it is separated from the original system. The purpose of this paper is to analyze the structure of SIARD_KR, identify expected problems, and suggest improvement measures for them.
Journal of Korean Society of Archives and Records Management
/
v.21
no.1
/
pp.75-95
/
2021
In this study, we focused on creating plans to manage the administrative information dataset of public records in closed universities. In particular, according to various reference materials and internal materials of the institution, we studied the theoretical discussion about the dataset and figured out the management status of the closed university's dataset. Therefore, as a measure for the data management of the Comprehensive Information Management System, recording targets are selected, retention periods are determined, administrative information dataset management standards are prepared, administrative information dataset evaluation and deletion are implemented, and comprehensive management systems of closed universities are established.
International Journal of Computer Science & Network Security
/
v.21
no.4
/
pp.214-222
/
2021
Recently, the growth of e-commerce in Saudi Arabia has been exponential, bringing new remarkable challenges. A naive approach for product matching and categorization is needed to help consumers choose the right store to purchase a product. This paper presents a machine learning approach for product matching that combines deep learning techniques with standard artificial neural networks (ANNs). Existing methods focused on product matching, whereas our model compares products based on unstructured descriptions. We evaluated our electronics dataset model from three business-to-consumer (B2C) online stores by putting the match products collectively in one dataset. The performance evaluation based on k-mean classifier prediction from three real-world online stores demonstrates that the proposed algorithm outperforms the benchmarked approach by 80% on average F1-measure.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.365-380
/
2022
The target detection algorithm based on supervised learning is the current mainstream algorithm for target detection. A high-quality dataset is the prerequisite for the target detection algorithm to obtain good detection performance. The larger the number and quality of the dataset, the stronger the generalization ability of the model, that is, the dataset determines the upper limit of the model learning. The convolutional neural network optimizes the network parameters in a strong supervision method. The error is calculated by comparing the predicted frame with the manually labeled real frame, and then the error is passed into the network for continuous optimization. Strongly supervised learning mainly relies on a large number of images as models for continuous learning, so the number and quality of images directly affect the results of learning. This paper proposes a dataset STAR-24K (meaning a dataset for Space TArget Recognition with more than 24,000 images) for detecting common targets in space. Since there is currently no publicly available dataset for space target detection, we extracted some pictures from a series of channels such as pictures and videos released by the official websites of NASA (National Aeronautics and Space Administration) and ESA (The European Space Agency) and expanded them to 24,451 pictures. We evaluate popular object detection algorithms to build a benchmark. Our STAR-24K dataset is publicly available at https://github.com/Zzz-zcy/STAR-24K.
Journal of the Korea Society of Computer and Information
/
v.22
no.11
/
pp.97-104
/
2017
Location prediction has been successfully utilized to provide high quality of location-based services to customers in many applications. In its usual form, the conventional type of location prediction is to predict future locations based on user's past movement history. However, as location prediction needs are expanded into much complicated cases, it becomes necessary quite frequently to make inference on the locations that target user visited in the past. Typical cases include the identification of locations that infectious disease carriers may have visited before, and crime suspects may have dropped by on a certain day at a specific time-band. Therefore, primary goal of this study is to predict locations that users visited in the past. Information used for this purpose include user's demographic information and movement histories. Data mining classifiers such as Bayesian network, neural network, support vector machine, decision tree were adopted to analyze 6868 contextual dataset and compare classifiers' performance. Results show that general Bayesian network is the most robust classifier.
Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
Journal of Information Science Theory and Practice
/
v.10
no.spc
/
pp.135-142
/
2022
Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.
본 연구에서는 특정 비디오에서 추출된 비디오 클립이 어떤 비디오에서 추출된 것인지 탐색하는 알고리즘을 제안한다. 국내 이스포츠 리그 중 하나인 LCK의 경기 영상과 하이라이트 영상을 수집하여 알고리즘의 성능을 테스트하였다. 본 연구에서 제안한 알고리즘은 하이라이트 비디오 추출 모델개발에 필요한 비디오-하이라이트 클립 데이터셋을 구축하는 데 도움이 될 것이라 기대한다.
Kong, In Hak;Kim, Hong Joong;Oh, Jai Ho;Lee, Yang Won
Journal of Korean Society for Geospatial Information Science
/
v.24
no.4
/
pp.21-28
/
2016
Numeric weather prediction is important to prevent meteorological disasters such as heavy rain, heat wave, and cold wave. The Korea meteorological administration provides a realtime special weather report and the rural development administration demonstrates information about 2-day warning of agricultural disasters for farms in a few regions. To improve the early warning systems for meteorological hazards, a nation-wide high-resolution dataset for weather prediction should be combined with web-based GIS. This study aims to develop a web service prototype for early warning of meteorological hazards, which integrates web GIS technologies with a weather prediction database in a temporal resolution of 1 hour and a spatial resolution of 1 km. The spatially and temporally high-resolution dataset for meteorological hazards produced by downscaling of GME was serviced via a web GIS. In addition to the information about current status of meteorological hazards, the proposed system provides the hourly dong-level forecasting of meteorologic hazards for upcoming seven days, such as heavy rain, heat wave, and cold wave. This system can be utilized as an operational information service for municipal governments in Korea by achieving the future work to improve the accuracy of numeric weather predictions and the preprocessing time for raster and vector dataset.
Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. In order to overcome this problem, some previous researches suggest clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new hybrid case-based reasoning method which dynamically composing a searching pool for each target case. This method is applied to diagnose for the heart disease dataset. The results show that the suggested hybrid method produces statistically the same level of predictive performances with using significantly less computational cost than the CBR method and also outperforms the basic clustering-CBR (C-CBR) method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.