Acknowledgement
This paper was supported by the Ministry of Science and ICT, Republic of Korea (Project No. K-22-L04-C06-S01).
References
- Bellon, A., Zawadzki, I., Kilambi, A., Lee, H. C., Lee, Y. H., & Lee, G. (2010). McGill algorithm for precipitation now-casting by lagrangian extrapolation (MAPLE) applied to the South Korean radar network. Part I: Sensitivity studies of the Variational Echo Tracking (VET) technique. Asia-Pacific Journal of Atmospheric Sciences, 46(3), 369-381. https://doi.org/10.1007/s13143-010-1008-x.
- Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., Zhou, Y., Bo, X., & Xie, Z. (2018). Deep learning and its applications in biomedicine. Genomics, Proteomics and Bioinformatics, 16(1), 17-32. https://doi.org/10.1016/j.gpb.2017.07.003.
- Chung, S. R., Ahn, M. H., Han, K. S., Lee, K. T., & Shin, D. B. (2020). Meteorological products of Geo-KOMPSAT 2A (GK2A) satellite. Asia-Pacific Journal of Atmospheric Sciences, 56(2), 185. https://doi.org/10.1007/s13143-020-00199-x.
- Dixon, M., & Wiener, G. (1993). TITAN: Thunderstorm identification, tracking, analysis, and nowcasting-a radar-based methodology. Journal of Atmospheric and Oceanic Technology, 10(6), 785-797. https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.
- Evans, J. E., & Ducot, E. R. (2006). Corridor integrated weather system. Lincoln Laboratory Journal, 16(1), 59-80. https://www.ll.mit.edu/r-d/publications/corridor-integratedweather-system.
- Germann, U., & Zawadzki, I. (2002). Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Monthly Weather Review, 130(12), 2859-2873. https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.
- Germann, U., & Zawadzki, I. (2004). Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. Journal of Applied Meteorology, 43(1), 74-89. https://doi.org/10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2.
- Han, J. H., Suh, M. S., Yu, H. Y., & Roh, N. Y. (2020). Development of fog detection algorithm using GK2A/AMI and ground data. Remote Sensing, 12(19), 3181. https://doi.org/10.3390/rs12193181.
- Han, L., Sun, J., & Zhang, W. (2020). Convolutional neural network for convective storm nowcasting using 3-D doppler weather radar data. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 1487-1495. https://doi.org/10.1109/TGRS.2019.2948070.
- Ho, C. H., Lee, J. Y., Ahn, M. H., & Lee, H. S. (2003). A sudden change in summer rainfall characteristics in Korea during the late 1970s. International Journal of Climatology, 23(1), 117-128. https://doi.org/10.1002/joc.864.
- Hoffman, R. N., Kumar, V. K., Boukabara, S. A., Ide, K., Yang, F., & Atlas, R. (2018). Progress in forecast skill at three leading global operational NWP centers during 2015-17 as seen in summary assessment metrics (SAMs). Weather and Forecasting, 33(6), 1661-1679. https://doi.org/10.1175/WAFD-18-0117.1.
- Hong, S. Y. (2004). Comparison of heavy rainfall mechanisms in Korea and the central US. Journal of the Meteorological Society of Japan, 82(5), 1469-1479. https://doi.org/10.2151/jmsj.2004.1469.
- Hong, S. Y., Kwon, Y. C., Kim, T. H., Esther Kim, J. E., Choi, S. J., Kwon, I. H., Kim, J., Lee, E. H., Park, R. S., & Kim, D. I. (2018). The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pacific Journal of Atmospheric Sciences, 54 Suppl 1, 267-292. https://doi.org/10.1007/s13143-018-0028-9.
- Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42(2), 129-151. https://www.dbpia.co.kr/journal/articleDetail?nodeId=node00937254.
- Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318-2341. https://doi.org/10.1175/MWR3199.1.
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(13), D13103. https://doi.org/10.1029/2008JD009944.
- Imran, M., Castillo, C., Lucas, J., Meier, P., & Vieweg, S. (2014, April 7-11). AIDR: Artificial intelligence for disaster response. WWW '14 Companion: Proceedings of the 23rd International Conference on World Wide Web (pp. 159-162). Association for Computing Machinery.
- Jeong, C. H., Kim, W., Joo, W., Jang, D., & Yi, M. Y. (2021). Enhancing the encoding-forecasting model for precipitation nowcasting by putting high emphasis on the latest data of the time step. Atmosphere, 12(2), 261. https://doi.org/10.3390/atmos12020261.
- Jha, S. K., Bilalovic, J., Jha, A., Patel, N., & Zhang, H. (2017). Renewable energy: Present research and future scope of Artificial Intelligence. Renewable and Sustainable Energy Reviews, 77, 297-317. https://doi.org/10.1016/j.rser.2017.04.018.
- Kain, J. S. (2004). The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
- Kim, J. H., Yang, J. G., Kim, S. H., & Kim, J. S. (2012). Enhancement of Korean weather radar capability by introducing a dual-pol radar network. Paper presented at WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, Brussels, Belgium.
- Kwon, S., Jung, S. H., & Lee, G. W. (2015). Inter-comparison of radar rainfall rate using Constant Altitude Plan Position Indicator and hybrid surface rainfall maps. Journal of Hydrology, 531(Pt 2), 234-247. https://doi.org/10.1016/j.jhydrol.2015.08.063.
- Lorenz, E. N. (1982). Atmospheric predictability experiments with a large numerical model. Tellus, 34(6), 505-513. https://doi.org/10.3402/tellusa.v34i6.10836.
- Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., & Mohamed, S. (2021). Skilful precipitation nowcasting using deep generative models of radar. Nature, 597(7878), 672-677. https://doi.org/10.1038/s41586-021-03854-z.
- Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems, 28, 802-810. https://proceedings.neurips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html.
- Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2017). Deep learning for precipitation nowcasting: A benchmark and a new model. Advances in Neural Information Processing Systems, 30, 5618-5628. https://proceedings.neurips.cc/paper/2017/hash/a6db4ed04f1621a119799fd3d7545d3d-Abstract.html.
- Shin, H. C., Ha, J. H., Ahn, K. D., Lee, E. H., Kim, C. H., Lee, Y. H., & Clayton, A. (2022). An overview of KMA's operational NWP data assimilation systems. In S. K. Park, & L. Xu (Eds.), Data assimilation for atmospheric, oceanic and hydrologic applications (Vol. IV) (pp. 665-687). Springer International Publishing.
- Sibson, R. (1981, March 24-27). A brief description of natural neighbour interpolation. In V. Barnett (Ed.), Interpreting multivariate data: Proceedings of the conference entitled 'looking at multivariate data' held in the University of Sheffield, U.K. from 24-27 March 1980 (pp. 21-36). John Wiley & Sons.
- Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. University Corporation for Atmospheric Research.
- Sonderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., Agrawal, S., Hickey, J., & Kalchbrenner, N. (2020). MetNet: A neural weather model for precipitation forecasting. ArXiv. https://doi.org/10.48550/arXiv.2003.12140.
- Song, H. J., Lim, B., & Joo, S. (2019). Evaluation of rainfall forecasts with heavy rain types in the high-resolution unified model over South Korea. Weather and Forecasting, 34(5), 1277-1293. https://doi.org/10.1175/WAF-D-18-0140.1.
- Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-Hooimeyer, J., Joe, P., Barker, D. M., Li, P. W., Golding, B., Xu, M., & Pinto, J. (2014). Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bulletin of the American Meteorological Society, 95(3), 409-426. https://doi.org/10.1175/BAMS-D-11-00263.1.
- Turnera, B. J., Zawadzki, I., & Germann, U. (2004). Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). Journal of Applied Meteorology, 43(2), 231-248. https://doi.org/10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2.
- Wolfson, M. M., & Clark, D. A. (2006). Advanced aviation weather forecasts. Lincoln Laboratory Journal, 16(1), 31-58. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.920&rep=rep1&type=pdf.