• 제목/요약/키워드: adjoint shape sensitivity analysis

검색결과 48건 처리시간 0.026초

변분공식화를 이용한 2차원 아치 구조물의 설계민감도 해석 및 최적설계 (Design Sensitivity Analysis and Optimization of Plane Arch Structures Using Variational Formulation)

  • 최주호
    • 한국전산구조공학회논문집
    • /
    • 제14권2호
    • /
    • pp.159-171
    • /
    • 2001
  • 평면 아치 구조물에 대해 선형 탄성 변분방정식에 기반을 둔 설계민감도 해석을 위한 일반적 이론을 개발하였다. 아치 구조물내의 임의 마디에 정의된 응력범함수를 고려하였고 이에 대한 설계민감도 공식을 유도하기 위해 전미분(material derivative) 개념과 보조(adjoint) 변수 방법을 도입하였다. 얻어진 민감도 공식은 구조해석 결과를 얻고 나면 이들로부터 단순 대수연산을 통해 계산이 되므로 적용이 간편할 뿐 아니라 해의 정확도가 높은 잇점이 있다. 본 방법은 아치의 형상을 매개변수를 통해 표현하므로 얕은 아치에 국한하지 않고 어떠한 형상도 고려가 가능하며, 나아가서 아치의 형상변화를 형상에 대해 수직뿐 아니라 접선방향도 포함하여 일반적으로 고려하므로 다양한 형상설계가 가능하다. 몇 가지 예제에서 민감도 계산을 수행함으로써 본 방법의 정확도와 효율성을 입증하였으며, 두 가지의 설계최적화 문제를 대상으로 실제로 두께 및 형상최적설계를 수행하였다.

  • PDF

NURBS 곡면을 이용한 구조-유체 연성문제의 형상 최적설계 (Shape Design Optimization of Structure-Fluid Interaction Problems using NURBS Surfaces)

  • 장홍래;김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.508-511
    • /
    • 2010
  • 본 논문에서는 정상상태 유체-구조 연성문제를 연속체 기반으로 정식화하고 유한요소법을 이용하여 완전 연성된 해를 구하였다. 대 변형을 고려하기 위하여 토탈 라그란지안 정식화를 사용하였으며 유체 및 구조의 비선형성이 고려되었다. 유체와 구조 영역의 형상을 NURBS 곡면을 이용하여 매개화하여 표현하였으며, 형상 최적화를 위해 효율적인 설계민감도 해석법인 애조인 기법을 이용하여 압력, 속도, 변위 등에 대한 설계민감도를 구하였다. 이를 이용하여 최소 컴플라이언스를 갖게 하는 구조물 내부의 유체영역의 설계 등의 수치예제를 통하여 개발된 방법론의 타당성을 확인하였다.

  • PDF

확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계 (Level Set based Shape Optimization Using Extended B-spline Bases)

  • 김민근;조선호
    • 한국전산구조공학회논문집
    • /
    • 제21권3호
    • /
    • pp.239-245
    • /
    • 2008
  • 확장 B-스플라인 기저함수(extended B-spline basis functions)을 이용한 레벨셋 기반의 위상 형상 최적설계 기법을 정상 상태의 열전도 문제에 대하여 개발하였다. 본 해석법은 레벨셋으로 결정된 영역 안쪽만 고려하여 해석을 수행하게 되므로 열전달 문제에서 생길 수 있는 영역 바깥부분 영향을 제거할 수 있다. 설계민감도 해석으로부터 결정되는 법선속도를 활용하여 헤밀턴-자코비 방정식의 해를 구하게 되며, 주어진 체적조건 하에서 열 컴플라이언스(thermal compliance)가 최소가 되는 방향으로 최적의 형상을 결정할 수 있다. 형상 설계민감도를 정확하게 얻기 위해서는 레벨셋 함수와 B-스플라인 함수를 이용하여 수직 단위 벡터와 형상의 곡률을 정확히 결정하며, 위상 설계민감도를 통해 최적화과정 동안 필요한 위치와 시점에서 위상의 변화를 주는 홀을 쉽게 생성할 수 있다.

Topological Derivative를 이용한 선형 구조물의 레벨셋 기반 형상 최적 설계 (Level Set Based Shape Optimization of Linear Structures Using Topological Derivatives)

  • 하승현;김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.299-306
    • /
    • 2006
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The 'Hamilton-Jacobi (H-J)' equation and computationally robust numerical technique of 'up-wind scheme' lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H -J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes is not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

  • PDF

레벨셋과 무요소법을 결합한 위상 및 형상 최적설계 (Level Set Based Topological Shape Optimization Combined with Meshfree Method)

  • 안승호;하승현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2014
  • 레벨셋 기법과 무요소법을 결합한 위상 및 형상 최적설계 기법을 개발하여 선형 탄성문제에 적용하였다. 설계민감도는 애드조인트법을 사용하여 효율적으로 구하였다. 해밀턴-자코비 방정식을 업-윈드 기법을 이용하여 수치적으로 풀었으며, 구조물의 경계는 레벨셋 함수를 이용하여 암시적으로 표현하였다. 구조물의 응답과 설계민감도를 얻기 위하여 암시적 함수를 사용하여 명시적 경계를 생성하였다. 재생 커널 기법에 기초하여 얻어진 전역 절점 기저함수를 사용하여 연속체 지배방정식의 변위장을 이산화하였다. 따라서 질점들을 연속체 영역의 어느 곳이든 위치시킬 수 있으며, 이는 통해 명시적 경계를 생성하는 것이 가능하며, 결과적으로 정확한 설계를 얻을 수 있다. 개발된 방법은 제한 조건이 있는 최적설계 문제에 대하여 라그랑지안 범함수를 정의한다. 이는 경계의 변화를 통하여 허용 부피 제한조건을 만족시키면서 컴플라이언스를 최소화한다. 최적설계 과정 동안 라그랑지안 범함수의 최적화조건을 만족시킴으로써 해밀턴-자코비 방정식을 풀기 위한 속도장을 얻는다. 기존의 형상 최적설계 기법에 비하여, 본 방법론은 위상과 형상의 변화를 쉽게 얻어낼 수 있다.

설계 의존형 하중 조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계 (Isogeometric Shape Design Optimization of Structures Subjected to Design-dependent Loads)

  • 윤민호;구본용;하승현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2011
  • 본 논문에서는 아이소-지오메트릭 해석법을 이용하여 설계 의존형 하중조건을 갖는 구조물에 대한 형상 최적설계를 수행하였다. 유한요소법 기반 형상 최적설계는 CAD와 해석 모델의 차이로 인해, 설계영역 매개 변수화에 어려움이 있다. 아이소-지오메트릭 해석법은 CAD 모델과 동일한 NURBS 기저 함수와 조정점을 해석에 이용함으로써 설계의 기하학적 변화를 해석모델에 직접적으로 표현할 수 있는 장점을 가진다. 하중조건이 설계 영역에 따라 변화하는 최적설계 문제의 경우, 정확한 설계 영역 표현은 법선 벡터, 즉 변화하는 하중의 방향, 곡률 등 고차항의 정보를 정확하게 표현할 수 있고, 따라서 목적함수를 최소 또는 최대화시키는 최적의 해로 이끌어 낸다. 유한요소법 또는 밀도법을 이용한 형상 최적설계에서 설계 의존형 하중조건을 갖는 구조물의 문제를 푸는 경우, 최적설계가 진행됨에 있어 변화하는 경계의 부정확성 때문에 정확한 설계민감도를 얻기가 어려운 점이 있다. 본 논문에서는 수치 예제를 통해 아이소-지오메트릭 설계민감도를 활용한 형상 최적설계 기법이 설계 의존형 하중조건을 갖는 구조물 문제에서 유한요소 기반의 최적설계보다 더 나은 결과를 제시함을 확인하였다.

Topology Design Optimization of Electromagnetic Vibration Energy Harvester to Maximize Output Power

  • Lee, Jaewook;Yoon, Sang Won
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.283-288
    • /
    • 2013
  • This paper presents structural topology optimization that is being applied for the design of electromagnetic vibration energy harvester. The design goal is to maximize the root-mean-square value of output voltage generated by external vibration leading structures. To calculate the output voltage, the magnetic field analysis is performed by using the finite element method, and the obtained magnetic flux linkage is interpolated by using Lagrange polynomials. To achieve the design goal, permanent magnet is designed by using topology optimization. The analytical design sensitivity is derived from the adjoint variable method, and the formulated optimization problem is solved through the method of moving asymptotes (MMA). As optimization results, the optimal location and shape of the permanent magnet are provided when the magnetization direction is fixed. In addition, the optimization results including the design of magnetization direction are provided.

위상민감도를 이용한 선형구조물의 레벨셋 기반 형상 최적설계 (Level Set Based Shape Optimization of Linear Structures using Topological Derivatives)

  • 윤민호;하승현;김민근;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권1호
    • /
    • pp.9-16
    • /
    • 2014
  • 레벨셋 기법과 위상민감도를 이용하여 선형 탄성 구조물에 대하여, 초기 설계형상에 의존성이 없는 위상 및 형상 최적설계 기법을 개발하였다. 레벨셋 기법에서는 복잡한 위상 형상변화를 쉽게 다루기 위해 초기 영역은 고정한 채 레벨셋 함수로 표현되는 암시적 이동경계로 경계를 표현한다. 해밀턴-자코비(H-J) 방정식과 수치적으로 강건한 기법인 'up-wind scheme'은 컴플라이언스 목적함수를 최소화시키고 허용체적 제약조건을 만족시키면서, 초기 암시적 경계를 법선 속도장에 따라 최적의 형상으로 이끌어 낸다. 점근적인 정규화 개념에 근거하여, 구멍의 반지름을 0으로 접근시켜 형상 미분의 극한을 취한 위상민감도를 고려하였다. 최적조건으로부터 유도된 라그란지안의 감소 방향을 이용하여 H-J 방정식을 갱신하기 위한 속도장을 결정하였다. 개발한 방법에서는 위상민감도로부터 얻어지는 지표를 이용하여 구멍을 언제든지 어디에서나 생성가능하기 때문에 초기 구멍이 최적 형상을 얻기 위해 요구되지 않는다는 사실을 확인하였다. 또한 효율적인 최적화 과정을 위해서는 구멍 생성을 위한 조정변수의 적절한 선택이 중요함을 확인하였다.