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ABSTRACT

Using a level set method and topological derivatives, a topological shape optimization method that is
independent of an initial design is developed for linearly elastic structures. In the level set method, the initial
domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set
function, which facilitates to handle complicated topological shape changes. The “Hamilton-Jacobi (H-J)”
equation and computationally robust numerical technique of “up-wind scheme” lead the initial implicit
boundary to an optimal one according to the normal velocity field while minimizing the objective function of
compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept,
the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero.
The required velocity field to update the H-J equation is determined from the descent direction of Lagrangian
derived from optimality conditions. It turns out that the initial holes is not required to get the optimal result
since the developed method can create holes whenever and wherever necessary using indicators obtained from
the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is
crucial for efficient optimization process.

Keywords: Shape design optimization, Topological derivative, Level set method, Adjoint sensitivity analysis

1.LEVEL SET METHOD

Let Qc R’ be abounded open domain with a smooth boundary I" as shown in Figure 1.

AN

Figure 1 Level set function

Imagine the boundary T' of the domain moves in the direction normal to its boundary with a given
speed V. To derive the equation of moving boundary as time evolves, we regard this propagating

boundary as the zero level set @(x,7 =0) of a (d+1)-dimensional function O(@,k). At time =0,
assume the existence of a zero level set function @(x,0) that is Lipschitz continuous and defined on
Q;, satisfying
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where ¢ (x,I') is a distance function from a point x to the boundary I, for all xeR?. T}
represents an initial reference boundary. ; denotes an initial reference domain that includes all the
possible domains Q as

QcQ,. @
Using the level set function ¢ , an outward unit vector n normal to the boundary I” is obtained by
v
n= Yo (3)
Vel
and a curvature xis defined as the divergence of n
K:divn:—V-(V—¢J. (4)
V4|

Consider a two dimensional level set function ¢ for the simplicity of problems. We employ the
level set method for the implicit representation of moving boundaries. The level set model describes a
boundary in implicit form at zero level as the iso-surface of a scalar function ¢:R*> — R embedded in
three dimensional space. '

S={x:4x0 =k}, (5)
where % and x are an arbitrary iso-value and a point on the iso-surface ¢ , respectively. Taking the
material derivative of level set function with respect to a perturbation parameter 7 leads to the “Hamilton-

Jacobi Equation” as
dx
+Vg(x,,7)|_ -——‘
=0 = dT =0

0¢(x,0) dx .
i A Sl B v/ Nhakiolgiy ) B
o #(x,0) a7 0 (6)

D¢ _ 8¢(x,,1)
Dr  or

Let V, be aspeed function normal to the boundary. Using Equation (3), we have the following.

V Vo=V 22 m

¢ .
V4]
Using Equations (7) and applying appropriate boundary conditions, Equation (6) is rewritten as

o¢ o4 v
or l ¢] on|,,

2. ELASTICITY PROBLEMS

Consider an equilibrium equation for elasticity problems on a generic domain €2,
V.e+b=0, xeQ, )
where b is a body force intensity. Dirichlet and Neumann boundary conditions are respectively imposed
as

2=0, xel, and 6-n=t, xel}. (10)
Also, strain-displacement and constitutive relations are defined, respectively, as
s=%(Vz+Vz’)and 6=C:¢. (1D
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where C is the elastic material response tensor. Using a virtual displacement Z € Z, a variational
equation can be written as

a(z,2) = [ £(2):C:e(@)dQ= | b-ZdQ+ [ t-ZdT =4(z), VieZ, (12)
where
Z={ze[H‘(Q)]’:z:0 on T, } (13)

To derive an adjoint equation for the variational equation (12), consider a general performance
functional (z) as

y(@)=[ F@uQ. (14)
Taking the Fréchet derivative (o,o> withrespectto Z in the direction of Z leadsto
%)
<aw<z) > LcF(z) - s
Define a Lagrangian, using Equation (12), as
Lz, M) =y (z)—a(z,A)+4(\), YrheZ, (16)

where A is the solution of an adjoint system. Taking the Fréchet derivative of Equation (16) with respect
to z in the direction'of 2 and using a stationary condition, the adjoint equation can be derived as

7] N 0 = 0 =
—L(z,h)},A)={— A )—{—a(z,A),h)}=0. 17
(2 e 8)- (i) L)
Thus, the abstract form of the adjoint system can be defined as
a(h,x) = <-—( M) <6V’(z) > (), VieZ. (18)

3. SHAPE DERIVATIVE OF ELASTICITY

Using Equations (12), (14), and (16), define a Lagrangian for the compliance functional of elasticity
problems as

Lz, =[b- de+jrt 2dl - [ &(2):C: s(x)dmj b- MQ+j t-Ml, YAeZ, (19)
where A is the solution of the following adjoint equation,
a(k,-i):fnb-fﬂ+jrﬁt-i—dl“, VheZ. (20)
Likewise, for the perturbed design, we have the following.
L. h)=[ b +3)dQ+ [t +2)d, - | oz):Creh)dD,, W, eZ, (@)
where A, = A(x,) is the solution of the following adjoint equation in the perturbed domain,
a,(r,,x,)= j b-3.Q +J' t-Ldl,, Vi eZ,. 22)
Taking the shape derivative of Equation (21) in the dlrectlon of V, we have the following.

Lo(z,A)= I V (z+7&)+t (V(z+2)- n)+1<( t-(z+1))- (z):C:s(A)}V]dQ

T2 7

= [ v-{i@nvia. (23)

4. TOPOLOGICAL DERIVATIVE OF PLANE ELASTICITY

Consider the various domains shown in Figure 2.
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(a) Original domain (b) Topological variation (c) Shape variation

Figure 2 Various domains and variations

For the perturbed point X, € w,,, and the original point X € 0w, on the line between x, and the
center of hole X€ @ +c » the following relation holds.
Ix, - x| = |¢¥,n]| = z5p . (24)
Since ¥, <0 and 8p>0 when the hole is expanding,
Sp=|7n|=-¥, on dw,. (25)
Taking the Lebesque measure as
0, =], d, (26)
its derivative is obtained by
d
|C')p = -*'d—z_ ... do,.| = me V;dawp . 21
If a circular domain is selected, the variation of Lebesque measure is expressed as
5‘&7,,' =-27pdp =2npV, on 0w,. (28)
The corresponding shape derivative in boundary integral form is derived as
Ly(z,,) =], Tz, ), )V,dT, (29)

Note that since only the boundary of hole is perturbed, the design velocity vanishes on the other boundary.
The topological derivative for the compliance is written as

L (z,A)(X) = lim —Lis(zp,xp) , VXeQ. (30)
)]
Using Equations (27) and (29), Equation (30) can be rewritten as
L (z,A)(X) =lim Iz ,A W,dl,, VieQ. 31
T p_ma V"daa)pr" 2 %p P

/3

Since the traction vanishes on the boundary of hole Ga;p , Equation (31) is rewritten as

L(z,0)&)= l’ji.{l—;ld;;_[m; {bp (z,+M,)-0(z,): s(kp)}Vna(ap , VXeQ). (32)
R ld (4 .
Using asymptotic expansion, Equation (32) can be rewritten as
L (z,0)(X) = -n[de(z) :6 () - tre(z)tre(r)] = —Z(z,2)(%), (33)
where for the plane strain problems,

S(2.h)(&) = ﬁ‘—‘ﬁmc(z) 20+ (A= pire@)ire(n)] (34)
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| sratis) =2z

and for the plane stress problems,
A+u
H(3A+2u)

A, 1 are Lamé constants, respectively.

2(z,A)(X) = {8;10(2) ce(A) + Mnc(z)trs(x)} (35)

(A+2u)

5. TOPOLOGICAL SHAPE OPTIMIZATION

Formulation of Optimization Problems

The objective of topological shape optimization is to find the optimal layout that minimizes the
compliance of system under prescribed loadings. Considering the domain and boundary before nucleation,
the topological shape optimization problem is stated as

Minimize ¥ = j’nb - 2dQ + _[rt -zdl’ (36)

Subjectto m=[ dQ<M,,,, 37)

where M is an allowable volume. The adjoint shape and topological derivatives of compliance in

Equation (36) are readily available in Equations (23) and (33), respectively. Also, the shape derivative of
Equation (37) is obtained by

dm
g =2 = [V.VaQ (38)
dr |=o
p=0
and the topological derivative by
. dm ,
g (0 = lim— 2] 1, (39)
Py

{‘UPL dT =0

The velocity field V(x) defines the propagation speed of all level sets along the outward normal
direction. The velocity should be determined such that it reduces the compliance of system while
satisfying the requirement of allowable material volume. Define a Lagrangian function A for the
constrained optimization problems as ‘

A(r,,u,s)=y/+,u{m+s2 —Mm}, (40)
where M__ , s, and p are the allowable material volume, a slack variable to convert the inequality

constraint to the equality one, and a Lagrange multiplier, respectively. Using Kuhn-Tucker optimality
conditions, the optimality condition is obtained to

dA(T’g’S) =J' V{n(z,},)—}‘g}ﬂVndQ:O, (41)
dT =0 @

where

(42)

52{0 if [do<M,,

poif [dozM,,

Velocity Computation
Now that the distance function @#(X) is normal to the boundary and the only normal velocity has
influence on the result of shape optimization, the domain variation can be expressed, using the normal
velocity ¥V, (x).
Q, =(1d+T)EQ). 43)
Using Taylor series expansion in the normal direction of velocity field, the perturbed Lagrangian function
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can be expressed as

AQ) =AMAd+ ) Q)}= AQ) + A Q) )+, (44)
where the sensitivity of the Lagrangian function is expressed as ’
N@Q)=[ s@E e+, 45)
s
If we take the boundary variation in the descent direction of the sensitivity as
V,=—-Esle D +Efp, (46)

then the Equation (46) can be written as
AQ)=AL)) -7 jn S@E(e,A) + & p2dQ+ Oz + -+, (47)

Thus, the decrease of generalized compliance functional is guaranteed while satisfying the requirement of
allowable material volume.

6. NUMERICAL EXAMPLES

Example 1: Topological sensitivity
The purpose of this example is to verify the derived topological sensitivity expressions. The
verification model is shown in Figure 3-(a), where the plane model has the dimension of 2,430mm x
2,430mm, the thickness of 10mm, the Young's modulus of £ = 2 GPa, and the Poisson’s ratio of
v=0.3 for plane stress problems. The structure is subjected to a distributed load of
P,=P,=243x10"N/m’ . Figure 3-(b) shows a quarter model with a hole to obtain the finite difference
sensitivity.
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(a) Without hole (full model) (b) With hole (quarter model)

Figure 3 Verification model

In Table 1, the analytical design sensitivity coefficients of compliance computed from the developed
method are compared with finite difference ones using the quarter model in Figure 3-(b). The columns of
(a) and (b) stand for the analytical and the finite difference sensitivities, respectively. The finite difference
sensitivity of compliance is obtained, using Equation (28), by

. op(Q) _vw(Q)-w(Q)
yr = = , (48)
T el So,|

The sensitivities are compared as reducing the radius of hole. In the last column, the agreement between
analytical (a) and the finite difference (b) sensitivities are compared. The last column in Table 1 shows
excellent agreements and improved results as reducing the radius of hole. When the radius is equal to 0.5,
the best results are obtained.
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Table 1 Comparison of compliance sensitivity

Jaretia) =2

. Compliance  Compliance . Finite Difference )/ (b
Radius  without hole  with hole Iz, M)(x) @ ls e'nsiti;itv ®) x(u)m ((o/)o)
Plane stress case

1.50 3565.570 4923.928 .94.45
1.20 3305.261 4816.591 96.56
0.95 3138.642 4746.896 97.98
0.70 3013.999 4694.525 99.07
0.50 2869.466 2942.594 4650.784 4655.492 99.88
0.30 2895.628 4626.452 . 100.53
0.10 2872.354 4596.018 101.18
0.02 2869.581 4570.226 101.76

(a) Case A: without topological derivative

Example 2: Nucleation amount

The objective of topological shape optimization is to obtain the optimal layout of structure,
minimizing the compliance of structure and satisfying the requirement of allowable material volume. A
simply supported plate model has the dimension of 1,800mmx 600mm, thickness of 10mm, Young’s
modulus of £ =2 GP3, and Poisson’s ratio of ¥ =0.3 for plain stress problems and is subjected to a

concentrated force of F =1.0x10'N .
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Figure 4 Comparison of design histories
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(b) Case B: with topological derivative ( =1.8)

Figure 4-(a) shows the history of implicit boundary obtained from the level set based optimization
method. The design domain has the sufficient number of holes in the initial design and has no capability
of nucleation (Case A). The number in the parenthesis denotes the iteration number. Figure 4-(b) shows
the history without any holes inside the domain but incorporating the topological derivative for nucleation
(Case B). In general, the shape optimization yields a local optimum which is strongly dependent on the
initial design and consequently we obtain different optimal designs in Figure 4. In the Case A, if an initial
model has no intemal holes, the final optimal shape does not include any internal holes since the level set
based optimization method never creates new internal holes. On the other hand, in the Case B, the level
set based optimization method incorporating the topological derivative has the capability of nucleation.
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The criterion for nucleation is obtained as
Ar(®) =y (X)+ BE =-E(z, M(X) + B¢, 49)
where X(z,L)(X) and £ are non-negative quantities and B is a control parameter to speed up the

optimization process. Whenever Equation (49) becomes negative, nucleation occurs at the point X . Once
the topological variation occurs, i.e. nucleation, the other design variations are taken care of by the
successive shape variations. The level set based optimization method using topological derivatives (Case
B) yields faster convergent result than the existing level set based method (Case A).

7. CONCLUSIONS

A topological shape optimization method for linearly elastic structures is developed using the level
set method and topological derivative approach. Since the implicit moving boundary is used, it is easy to
represent the topological shape variations. Furthermore, there is no need to re-parameterize after
significant shape changes during the optimization since the moving boundary is represented by implicit
functions in the initial domain. Necessary design sensitivities are computed efficiently using the adjoint
DSA method. Based on the asymptotic regularization concept, the topological derivative is considered as
the limit of shape derivative as the radius of hole approaches to zero. For the optimization process, the
required velocity field to integrate the Hamilton-Jacobi equation is obtained from Kuhn-Tucker optimality
condition for the Lagrangian function. Numerical verification for the developed topological DSA method
is performed by comparing the analytical sensitivity with the finite differencing, which shows very good
agreement. The topological derivative is highly nonlinear with respect to the design variables. It also turns
out that the initial holes in the domain is not required to get the optimal result since this method creates
the holes during the optimization using the indicator obtained from the topological derivatives. It is
demonstrated that the proper choice of the parameters g and n,, is crucial for the efficiency of

optimization process.
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