• Title/Summary/Keyword: adiabatic test

Search Result 127, Processing Time 0.023 seconds

Effect of Hardening Accelerators on the Adiabatic Temperature property Properties of Precast Concrete and FEM analysis for Evaluating the Crack Performance (경화촉진제를 사용한 프리캐스트 콘크리트의 단열온도특성 및 FEM해석에 의한 균열성능 평가에 관한 연구)

  • Min, Tae-Beom;Cho, In-Sung;Mun, Young-Bum;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, initial crack index was evaluated by FEM analysis to find the crack propagation from hydration heat in precast concrete. As results, as the usage of hardening accelerator increased, initial compressive strength increased and setting time was shortened. Additionally, as amounts of hardening accelerators increased, the central temperature of concrete increased and the time to reach the highest temperature was shortened. It was demonstrated that the hardening accelerators accelerated the hydration reaction of cement, and caused the increase of hydration heat within the short period of time. Furthermore, the crack index for evaluating the heat level was performed by FEM. As results, there was no problem about the cracks, despite of the growth of initial high hydration heat. This is because of the increased tensile strength that is large enough to sustain the thermally induced-stress.

Two-Phase Flow Distribution, Phase Separation and Pressure Drop in Multi-Microchannel Tubes (마이크로채널관 내 2상 유량분배, 상분리 및 압력강하)

  • Cho, Hong-Ki;Cho, Geum-Nam;Yoon, Baek;Kim, Young-Saeng;Kim, Jung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.828-837
    • /
    • 2004
  • The present study investigated two-phase flow distribution, phase separation and pressure drop in multi-microchannel tubes under adiabatic condition. The test section consisted of inlet and outlet headers with the inner diameter of 19.4㎜ and 15 parallel microchannel tubes. Each microchannel tube brazed to the inlet and outlet headers and had 8 rectangular ports with the hydraulic diameter of 1.32㎜. The key experimental parameters were orientation of header (horizontal and vertical), flow direction of refrigerant into the inlet header (in-line, parallel and cross flow) and inlet quality (0.1, 0.2 and 0.3). It was found that the orientation of the header had relatively large effect on the flow distribution and phase separation, while the inlet quality didn't affect much on them. The horizontal header showed the better flow distribution and phase separation characteristics than the vertical one. The parallel flow condition with the horizontal header showed the best performance for the flow distribution and phase separation characteristics under the test conditions. Two-phase pressure drops through the microchannel tubes with the horizontal header were higher than those of the microchennel tubes with the vertical header due to gravitational effect.

The Microstructure and Coarsening Behavior of Cr2O3 Dispersoid in ODS Cu Produced by Reactive Milling (반응성 밀링에 의해 제조된 Cr2O3 분산강화형 Cu 합금의 미세조직과 입자조대화)

  • Park, Eun-Bum;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.171-179
    • /
    • 2018
  • Copper powder dispersed with 4 vol.% of $Cr_2O_3$ was successfully produced by a simple milling at 210 K with a mixture of $Cu_2O$, Cu and Cr elemental powders, followed by Hot Pressing (HP) at 1123 K and 50 MPa for 2h to consolidate the milled powder. The microstructure of the HPed material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEMEDS analysis showed that the HPed materials comprised a mixture of nanocrystalline Cu matrix and $Cr_2O_3$ dispersoid with a homogeneous bimodal size distribution. The mechanical properties of the HPed materials were characterized by micro Vickers hardness test at room temperature. The thermodynamic considerations on the heat of formation, the incubation time to ignite MSR (Mechanically induced Self-sustaining Reaction), and the adiabatic temperature for the heat of displacement reaction between the oxide-metal are made for the delayed formation of $Cr_2O_3$ dispersoid in terms of MSR suppression. The results of TEM observation and hardness test indicated that the relatively large dispersoids in the HPed materials are attributed to the significant coarsening for the high temperature consolidation; this leads to the low Vickers hardness value. Based on the thermodynamic calculation for the operating processes with a limited number of parameters, the formation kinetics and coarsening of the $Cr_2O_3$ dispersoid are discussed.

The Properties of Strength and Durability of Concrete Using Early-Strength Poly Carbonic Acid Admixture (폴리카르본산계 조강혼화제 혼합 콘크리트의 강도 및 내구 특성)

  • Lee, Sang-Ho;Hong, Kyung-Sun;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.217-224
    • /
    • 2007
  • This study reports the properties of high early strength & durability of concrete using PC admixture. To apply these data to construction site, we did the lab tests. The target of this study is to accomplish early strength of concrete (5.0 Mpa/18 hr), and we did the durability tests such as length change test, chloride ion penetration test, fleeting and thawing test, adiabatic test, etc. And we tested the porperties of concrete by the different factors, such as the type of admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. As a result, we made a concrete of high early strength concrete, and excellent durable concrete. According to these tests, we concluded that we can apply this type of PC admixture to the civil & construction site, and we can reduce the term of works and finally we will accomplish the economical construction.

Field Application on Mass Concrete of Combined Coarse Particle Cement and Fly-Ash in Mat Foundation (조분(粗粉) 시멘트와 플라이애시를 복합 치환한 매트 기초 매스콘크리트의 현장적용)

  • Han, Cheon-Goo;Jang, Duk-Bae;Lee, Chung-Sub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • This study carried out a Mock-up test to apply Low-heat Cement (CF) that is adjusted to a fineness of $3,000\;{\pm}\;200\;cm^2/g$ by substituting Coarse particle Cement (CC) and fly ash with ordinary Portland Cement (OPC), then applied it on-site. The result of the test is as follows. The Mock-up test showed that the amount of admixture in CF increased SP agent and AE agent slightly more compared to OPC, while temperature history showed that the highest temperature of CF was around $6{\sim}10^{\circ}C$ lower than that of OPC. Compressive strength in CF was low compared to that of OPC, but the strength width became narrow at the age of 28 days, which is not considered to be significant. In on-site application, slump, air content and chloride content all satisfied the target values, while the temperature history showed that the highest temperature in the center by each cast was about $34^{\circ}C$ in the first cast, $42^{\circ}C$ in the second cast, and $39^{\circ}C$ in the third cast. Compressive strength of specimen for strut management showed low value compared to standard curing, but its strength was reduced at the age of 28 days.

Effect of Rib Arrangement on Heat Transfer in the Divergent Channel (확대 채널에서 리브 배열이 열전달에 미치는 효과)

  • Lee, Myung-Sung;Lee, Gyeong-Ju;Kim, Sang-Moon;Min, Se-Chan;Bae, Jae-Moon;Hwang, Jun-Su;Park, Cheol-O;Kim, Dong-Chan;Jung, Jung-Hyeon;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.35-40
    • /
    • 2017
  • The effects of the different rib geometries such as V-shaped continuous (case A), parallel broken (case B), and V-shaped broken (case C) ribs on the heat transfer and pressure drops in a divergent channel with $45^{\circ}$ inclined ribs on one wall or two walls are checked out. The top and bottom walls are adiabatic; two side walls are uniformly heated in the divergent rectangular channel. The tested Reynolds numbers are ranged from 22,000 to 75,000. The channel with two opposite walls inclined only has the length of test section of 1 m and the channel divergence ratio of $D_{ho}/D_{hi}=1.49$, corresponding to $1.43^{\circ}$ inclined walls. The results show in the identical pumping power that the V-shaped continuous rib (case A) with two ribbed walls is the greatest, but the parallel broken rib (case B) with one ribbed wall is the worst in the thermal performance.

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency (LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.

A Study on the Development of Non-PC High-Early-Strength Concrete Without Steam Curing (증기양생이 불필요한 PC부재용 조강형 콘크리트 개발에 관한 연구)

  • Jun, Woo-Chul;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Jae-Sam;Kim, Kyung-Min;Cho, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.156-162
    • /
    • 2014
  • This study aims to develop a rapidly hardening type of concrete to achieve the removal of form intensity (more than 10MPa) using the method of curing at room temperature in order to solve some economic environmental problems by omitting the steam curing process involved in producing PC (Precast Concrete). Therefore, this study evaluated a rapidly hardening cement containing a high amunt of C3S, which is very responsive in expressing early intensity, and a rapidly hardening type of concrete which uses some hardening accelerator to increase thehydration reaction of $C_3S$. The results of the experiment on concrete using some hardening accelerator are asfollows. In the slump flow experiment for identifying the liquidity and the air test, the desired values were met. The compression strength showed rapid expression response by 12 hours, and met the desired value within 6~9 hours. Its drying shrinkage value and Autogenous shrinkage value were measured as below ($-754.5{\times}10^{-6}$),and satisfied the requirements. In addition, in the Semi-Adiabatic Temperature Test, it was found that the concrete rose to its peak temperature within 24 hours and then its temperature dropped.