DOI QR코드

DOI QR Code

The Microstructure and Coarsening Behavior of Cr2O3 Dispersoid in ODS Cu Produced by Reactive Milling

반응성 밀링에 의해 제조된 Cr2O3 분산강화형 Cu 합금의 미세조직과 입자조대화

  • Park, Eun-Bum (Dep't of Advanced Materials Science & Engineering, Daejin University) ;
  • Hwang, Seung-Joon (Dep't of Advanced Materials Science & Engineering, Daejin University)
  • 박은범 (대진대학교 신소재공학과) ;
  • 황승준 (대진대학교 신소재공학과)
  • Received : 2018.06.14
  • Accepted : 2018.07.05
  • Published : 2018.07.30

Abstract

Copper powder dispersed with 4 vol.% of $Cr_2O_3$ was successfully produced by a simple milling at 210 K with a mixture of $Cu_2O$, Cu and Cr elemental powders, followed by Hot Pressing (HP) at 1123 K and 50 MPa for 2h to consolidate the milled powder. The microstructure of the HPed material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEMEDS analysis showed that the HPed materials comprised a mixture of nanocrystalline Cu matrix and $Cr_2O_3$ dispersoid with a homogeneous bimodal size distribution. The mechanical properties of the HPed materials were characterized by micro Vickers hardness test at room temperature. The thermodynamic considerations on the heat of formation, the incubation time to ignite MSR (Mechanically induced Self-sustaining Reaction), and the adiabatic temperature for the heat of displacement reaction between the oxide-metal are made for the delayed formation of $Cr_2O_3$ dispersoid in terms of MSR suppression. The results of TEM observation and hardness test indicated that the relatively large dispersoids in the HPed materials are attributed to the significant coarsening for the high temperature consolidation; this leads to the low Vickers hardness value. Based on the thermodynamic calculation for the operating processes with a limited number of parameters, the formation kinetics and coarsening of the $Cr_2O_3$ dispersoid are discussed.

Keywords

References

  1. J. R. Groza : J. Mater. Eng. Perform., 1 (1992) 113-121. https://doi.org/10.1007/BF02650042
  2. J. R. Groza and J. C. Gibeling : Mater. Sci. Eng. A 171 (1993) 115-125. https://doi.org/10.1016/0921-5093(93)90398-X
  3. D. Shou, H. Geng, W. Zeng, D, Zheng, H. Pan, C. Kong, P. Monroe, G. Sha, C. Suryannarayana, and D. Zhang : Mater. Sci. Eng. A 712 (2018) 80-87. https://doi.org/10.1016/j.msea.2017.11.105
  4. S. Liang, L. Fang, and Z. Fan : Mater. Sci. Eng. A 374 (2004) 27-33. https://doi.org/10.1016/j.msea.2003.09.082
  5. F. Shojaeepour, P. Abachi, K. Purazrang, and A. H. Moghanian : Powder Technol., 222 (2012) 80-84. https://doi.org/10.1016/j.powtec.2012.02.001
  6. S. J. Hwang and J. H. Lee : Mater. Sci. Eng. A 405 (2005) 140-146. https://doi.org/10.1016/j.msea.2005.05.077
  7. S. J. Hwang : J. Alloys Compd. 509 (2011) 2355-2359. https://doi.org/10.1016/j.jallcom.2010.11.017
  8. S. J. Hwang : J. Alloys Compd. 638 (2015) 136-140. https://doi.org/10.1016/j.jallcom.2015.03.043
  9. 김문집, 서일환 : X선 회절분석, 반도출판사 (1993) 254-256.
  10. G. B. Schaffer and P. G. McCormick : Appl. Phys. Lett. 55 (1989) 45. https://doi.org/10.1063/1.101750
  11. G. B. Schaffer and P. G. McCormick : Met. Trans. A 21 (1990) 2789. https://doi.org/10.1007/BF02646073
  12. D. Y. Ying and D. L. Zhang : Mat. Sci Eng. A 286 (2000) 152-156. https://doi.org/10.1016/S0921-5093(00)00627-4
  13. T. Venugopal, K. Prasad Rao, and B. S. Murty : Mat. Sci Eng. A393 (2005) 382. https://doi.org/10.1016/j.msea.2004.10.035
  14. P. M. Botta, R. C. Mercader, E. F. Aglietti, and J. M. Porto Lopez : Scripta Mat. 48 (2003) 1093-1098. https://doi.org/10.1016/S1359-6462(02)00630-9
  15. R. K. Guduru, R. O. Scattergood, C. C. Koch, K. L. Murty, S. Furuswamy, and M. K. McCarter : Scripta Mat. 54 (2006) 1879-1883. https://doi.org/10.1016/j.scriptamat.2006.02.014
  16. T. Mousavi, F. Karimzadeh, and M. H. Abbasi : J. Alloys Comp. 467 (2009) 173-178. https://doi.org/10.1016/j.jallcom.2007.11.136
  17. N. Forouzanmehr, F. Karimzadeh, and M. H. Enayati : J. Alloys Comp. 478 (2009) 257-259. https://doi.org/10.1016/j.jallcom.2008.12.047
  18. H. Zuhailawati and Y. Mahani : J. Alloys Comp. 476 (2009) 142-146. https://doi.org/10.1016/j.jallcom.2008.09.018
  19. D. L. Zhang and J. J. Richmond : J Mat Sci 34 (1999) 701. https://doi.org/10.1023/A:1004504425653
  20. N. Nachum, N. A. Fleck, M. F. Ashby, A. Colella, and P. Matteazzi : Mat. Sci Eng. A 527 (2010) 5065. https://doi.org/10.1016/j.msea.2010.04.070
  21. G. Chakarov, G. Gospodinov, and Z. Bontschev : J Solid State Chem 41 (1982) 244. https://doi.org/10.1016/0022-4596(82)90142-6
  22. P. G. McCormick : Materials Transaction, JIM 2 (1995) 161.
  23. L. Takacs : Prog. in Mat. Sci, 47 (2002) 355-414. https://doi.org/10.1016/S0079-6425(01)00002-0
  24. S. Z. Anvari, F. Karimaadeh, and M. H. Enayati : Journal of Alloys and Compounds 477 (2009) 178-181. https://doi.org/10.1016/j.jallcom.2008.10.043
  25. T. Venugopal, K. Prasad Rao, and B. S. Murty : Materials Science and Engineering A 393 (2005) 382-386. https://doi.org/10.1016/j.msea.2004.10.035
  26. G. Mulas, M. Monagheddu, S. Doppiu, F. Cocco, F. maglia, and U. Anselmi Tamburini : Solid State Ionics 141-142 (2001) 649-656. https://doi.org/10.1016/S0167-2738(01)00799-8
  27. Z. A. Munir and U. Anselmi-Tamburini : Mat Sci Rep 3 (1989) 277. https://doi.org/10.1016/0920-2307(89)90001-7
  28. J. J. Moore and J. J. Feng : Prog. Mater Sci 39 (1995) 243-275. https://doi.org/10.1016/0079-6425(94)00011-5
  29. Z. A. Munir and U. Anselmi-Tamburini : Am Ceram Soc Bull 67 (1988) 342.
  30. J. A. Rodrigues, V. C. Pandolfelli, W. J. Botta, R. Tomasi, B. Derby, and R. Stevens : J. Mater Sci Lett 10 (1991) 819. https://doi.org/10.1007/BF00724748
  31. W. Liu and P. G McCormick : Mater Sci Forum 315-317 (1999) 552. https://doi.org/10.4028/www.scientific.net/MSF.315-317.552
  32. G. Concas, A. Corrias, E. Manca, G. Marongiu, G. Paschinna, G. Spano, Z. Naturforsch 53A (1998) 239.
  33. M. Pardavi-Horvath and L. Takacs : IEEE Trans Magn 28 (1992) 3186. https://doi.org/10.1109/20.179753
  34. L. Takacs, In: S. Komarnemi, J. C parker, F. J Thomas editors. Nanophase and nanocomposite materials, Pittsburgh: MRS Symp. Proc. 286 (1993) 413.
  35. I. M. Lifshitz and V. V. Slyozov : J. Phys. Chem. Solids, 19 (1961) 35-50. https://doi.org/10.1016/0022-3697(61)90054-3
  36. D. A. Porter and K. E. Easterling : "Phase Transformations in Metals and Alloys", Nelson Thornes, 2001, 2nd ed.
  37. J. J. Stephen, R. J. Bourcier, F. J. Vigil, and D. T. Schmale : in "Mechanical Properties of Dispersion Strengthened Copper: A comparision of Braze Cycle Annealed and Coarse Grain Microstructures," SANDIA Report, SAND (1988) 88-1351.