Browse > Article
http://dx.doi.org/10.12656/jksht.2018.31.4.171

The Microstructure and Coarsening Behavior of Cr2O3 Dispersoid in ODS Cu Produced by Reactive Milling  

Park, Eun-Bum (Dep't of Advanced Materials Science & Engineering, Daejin University)
Hwang, Seung-Joon (Dep't of Advanced Materials Science & Engineering, Daejin University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.31, no.4, 2018 , pp. 171-179 More about this Journal
Abstract
Copper powder dispersed with 4 vol.% of $Cr_2O_3$ was successfully produced by a simple milling at 210 K with a mixture of $Cu_2O$, Cu and Cr elemental powders, followed by Hot Pressing (HP) at 1123 K and 50 MPa for 2h to consolidate the milled powder. The microstructure of the HPed material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEMEDS analysis showed that the HPed materials comprised a mixture of nanocrystalline Cu matrix and $Cr_2O_3$ dispersoid with a homogeneous bimodal size distribution. The mechanical properties of the HPed materials were characterized by micro Vickers hardness test at room temperature. The thermodynamic considerations on the heat of formation, the incubation time to ignite MSR (Mechanically induced Self-sustaining Reaction), and the adiabatic temperature for the heat of displacement reaction between the oxide-metal are made for the delayed formation of $Cr_2O_3$ dispersoid in terms of MSR suppression. The results of TEM observation and hardness test indicated that the relatively large dispersoids in the HPed materials are attributed to the significant coarsening for the high temperature consolidation; this leads to the low Vickers hardness value. Based on the thermodynamic calculation for the operating processes with a limited number of parameters, the formation kinetics and coarsening of the $Cr_2O_3$ dispersoid are discussed.
Keywords
Cryogenic-milling; $Cr_2O_3$ dispersoid; Dispersoid formation kinetics; Dispersoid Coarsening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Takacs, In: S. Komarnemi, J. C parker, F. J Thomas editors. Nanophase and nanocomposite materials, Pittsburgh: MRS Symp. Proc. 286 (1993) 413.
2 I. M. Lifshitz and V. V. Slyozov : J. Phys. Chem. Solids, 19 (1961) 35-50.   DOI
3 D. A. Porter and K. E. Easterling : "Phase Transformations in Metals and Alloys", Nelson Thornes, 2001, 2nd ed.
4 J. J. Stephen, R. J. Bourcier, F. J. Vigil, and D. T. Schmale : in "Mechanical Properties of Dispersion Strengthened Copper: A comparision of Braze Cycle Annealed and Coarse Grain Microstructures," SANDIA Report, SAND (1988) 88-1351.
5 G. Concas, A. Corrias, E. Manca, G. Marongiu, G. Paschinna, G. Spano, Z. Naturforsch 53A (1998) 239.
6 M. Pardavi-Horvath and L. Takacs : IEEE Trans Magn 28 (1992) 3186.   DOI
7 R. K. Guduru, R. O. Scattergood, C. C. Koch, K. L. Murty, S. Furuswamy, and M. K. McCarter : Scripta Mat. 54 (2006) 1879-1883.   DOI
8 T. Mousavi, F. Karimzadeh, and M. H. Abbasi : J. Alloys Comp. 467 (2009) 173-178.   DOI
9 N. Forouzanmehr, F. Karimzadeh, and M. H. Enayati : J. Alloys Comp. 478 (2009) 257-259.   DOI
10 H. Zuhailawati and Y. Mahani : J. Alloys Comp. 476 (2009) 142-146.   DOI
11 D. L. Zhang and J. J. Richmond : J Mat Sci 34 (1999) 701.   DOI
12 N. Nachum, N. A. Fleck, M. F. Ashby, A. Colella, and P. Matteazzi : Mat. Sci Eng. A 527 (2010) 5065.   DOI
13 G. Chakarov, G. Gospodinov, and Z. Bontschev : J Solid State Chem 41 (1982) 244.   DOI
14 P. G. McCormick : Materials Transaction, JIM 2 (1995) 161.
15 L. Takacs : Prog. in Mat. Sci, 47 (2002) 355-414.   DOI
16 T. Venugopal, K. Prasad Rao, and B. S. Murty : Mat. Sci Eng. A393 (2005) 382.   DOI
17 P. M. Botta, R. C. Mercader, E. F. Aglietti, and J. M. Porto Lopez : Scripta Mat. 48 (2003) 1093-1098.   DOI
18 S. Z. Anvari, F. Karimaadeh, and M. H. Enayati : Journal of Alloys and Compounds 477 (2009) 178-181.   DOI
19 T. Venugopal, K. Prasad Rao, and B. S. Murty : Materials Science and Engineering A 393 (2005) 382-386.   DOI
20 G. Mulas, M. Monagheddu, S. Doppiu, F. Cocco, F. maglia, and U. Anselmi Tamburini : Solid State Ionics 141-142 (2001) 649-656.   DOI
21 Z. A. Munir and U. Anselmi-Tamburini : Mat Sci Rep 3 (1989) 277.   DOI
22 J. J. Moore and J. J. Feng : Prog. Mater Sci 39 (1995) 243-275.   DOI
23 Z. A. Munir and U. Anselmi-Tamburini : Am Ceram Soc Bull 67 (1988) 342.
24 J. A. Rodrigues, V. C. Pandolfelli, W. J. Botta, R. Tomasi, B. Derby, and R. Stevens : J. Mater Sci Lett 10 (1991) 819.   DOI
25 W. Liu and P. G McCormick : Mater Sci Forum 315-317 (1999) 552.   DOI
26 J. R. Groza : J. Mater. Eng. Perform., 1 (1992) 113-121.   DOI
27 J. R. Groza and J. C. Gibeling : Mater. Sci. Eng. A 171 (1993) 115-125.   DOI
28 F. Shojaeepour, P. Abachi, K. Purazrang, and A. H. Moghanian : Powder Technol., 222 (2012) 80-84.   DOI
29 D. Shou, H. Geng, W. Zeng, D, Zheng, H. Pan, C. Kong, P. Monroe, G. Sha, C. Suryannarayana, and D. Zhang : Mater. Sci. Eng. A 712 (2018) 80-87.   DOI
30 S. Liang, L. Fang, and Z. Fan : Mater. Sci. Eng. A 374 (2004) 27-33.   DOI
31 S. J. Hwang and J. H. Lee : Mater. Sci. Eng. A 405 (2005) 140-146.   DOI
32 S. J. Hwang : J. Alloys Compd. 509 (2011) 2355-2359.   DOI
33 S. J. Hwang : J. Alloys Compd. 638 (2015) 136-140.   DOI
34 김문집, 서일환 : X선 회절분석, 반도출판사 (1993) 254-256.
35 G. B. Schaffer and P. G. McCormick : Appl. Phys. Lett. 55 (1989) 45.   DOI
36 G. B. Schaffer and P. G. McCormick : Met. Trans. A 21 (1990) 2789.   DOI
37 D. Y. Ying and D. L. Zhang : Mat. Sci Eng. A 286 (2000) 152-156.   DOI