• Title/Summary/Keyword: adhesive energy

Search Result 294, Processing Time 0.022 seconds

Investigation on nanoadhesive bonding of plasma modified titanium for aerospace application

  • Ahmed, Sabbir;Chakrabarty, Debabrata;Mukherjee, Subroto;Joseph, Alphonsa;Jhala, Ghanshyam;Bhowmik, Shantanu
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Physico-chemical changes of the plasma modified titanium alloy [Ti-6Al-4V] surface were studied with respect to their crystallographic changes by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).The plasma-treatment of surface was carried out to enhance adhesion of high performance nano reinforced epoxy adhesive, a phenomenon that was manifested in subsequent experimental results. The enhancement of adhesion as a consequence of improved spreading and wetting on metal surface was studied by contact angle (sessile drop method) and surface energy determination, which shows a distinct increase in polar component of surface energy. The synergism in bond strength was established by analyzing the lap-shear strength of titanium laminate. The extent of enhancement in thermal stability of the dispersed nanosilica particles reinforced epoxy adhesive was studied by Thermo Gravimetric Analysis (TGA), which shows an increase in onset of degradation and high amount of residuals at the high temperature range under study. The fractured surfaces of the joint were examined by Scanning electron microscope (SEM).

Evaluation of Adhesive Bonding Quality by Acoustic Emission (음향방출시험에 의한 복합 재료 접합부의 비파괴평가)

  • Lee, J.O.;Lee, J.S.;Yoon, U.H.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.79-85
    • /
    • 1996
  • Prediction of fatigue life and monitoring of fracture process for adhesively bonded CFRP composites joint have been investigated by analysis of acoustic emission signals during the fatigue and tension tests. During fatigue test, generated acoustic emission is related to stored elastic strain energy. By results of monitoring of AE event rate, fatigue process could be divided into two regions, and boundaries of two regions, fatigue cycles of the initiation of fast crack growth, were 70-80% of fatigue life even though the fatigue life were highly scattered from specimen to specimen. The result shows the possibility of predicting catastrophic failure by acoustic emission monitoring.

  • PDF

The Effects of Functional Monomers on the Synthesis andPhysical Properties of Solution Type Quaternary Polymer Acrylic Pressure-Sensitive Adhesives (관능성 단량체 종류에 따른 4원 용액형 아크릴계 점착제의 합성과 물성에 관한 연구)

  • Kim, Nam-Seok;Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.525-532
    • /
    • 2008
  • To prepare a solution type acrylic pressure-sensitive adhesive, quarter polymers were synthesized from butyl acrylate(BA), 2-ethylhexylacrylate(2-EHA) as a base monomer, methyl methacrylate(MMA) as a comonomer, each of methacrylic acid(MAA), acrylic acid(AA) as a functional monomer. Acrylic solution type pressure-sensitive adhesives(PSA's) of isocyanate derivative crosslinking PSA's were prepared by crosslinking of BEMM, BEMA with toluene-2,4-diisocyanate. The structure of adhesive was identified by FT-IR. The viscosity was measured by using Brookfield DV-III and molecular weight was measured by using gel permeation chromatography. The physical properties of polyethylene film coated with BEMMT, BEMAT were measured as a function of the concentration. As the result, BEMMT(0.6, 0.8), BEMAT(0.6) showed peel adhesion of $160{\sim}180\;g_f$/25 mm width and shear adhesion of more than 24 hours, and tackiness of $4/32{\sim}6/32$ which was relevant to commercial usage.

Anti-inflammatory effects of Lactobacillus reuteri LM1071 via MAP kinase pathway in IL-1β-induced HT-29 cells

  • Kim, Tae-rahk;Choi, Kyoung-sook;Ji, Yosep;Holzapfel, Wilhelm H.;Jeon, Min-Gyu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.864-874
    • /
    • 2020
  • Lactic acid bacteria are well-known probiotics, conferring several health benefits. In this study, we isolated lactobacilli from human breast milk and identified Lactobacillus reuteri LM1071 (RR-LM1071) using 16S rDNA sequencing. We tested the hemolytic activity, biogenic amine production, and antibiotic susceptibility of this strain to assess its safety. RR-LM1071 was found to be negative for hemolytic activity and biogenic amine production, as well as was measured in susceptible level for antibiotics in the minimal inhibitory concentration (MIC) test. The adhesive properties of RR-LM1071 were higher than those of LGG in HT-29 cells, and showed a greater hydrophobicity than LGG in hexadecane solvent. Under inflammatory conditions, RR-LM1071 suppressed the mRNA expression of IL-6, TNF-α, and IL-4 produced in IL-1β-induced HT-29 cells. Our results suggest that RR-LM1071 is a safe and valuable probiotic that can be used for the treatment of inflammatory bowel disease.

Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes Using Cohesive Zone Element (응집 영역 요소를 이용한 고분자 접착 테이프의 박리거동 모사)

  • Jang, Jinhyeok;Sung, Minchang;Yu, Woong-Ryeol
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 2016
  • Metal and polymer sandwich composites, which are made of sheet metal sheath and polymer or fiber reinforced plastic core, have been reconsidered as an alternative to sheet metal due to their lightness and multifunctional properties such as damping and sound-proof properties. For the successful applications of these composites, the delamination prediction based on the adhesion strength is important element. In this study, the numerical simulation of the delamination behavior of polymeric adhesive tapes with metallic surfaces was performed using cohesive zone elements and finite element software. The traction-separation law of the cohesive zone element was defined using the fracture energy derived from peel mechanics and experimental results from peel test and implemented in finite element software. The peel test of the polymeric adhesive film against steel surface was simulated and compared with experiments, demonstrating reasonable agreement between simulation and experiment.

A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting (점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구)

  • Yujin Ha;Min-Wook Kim;Wook-Bae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.

Study on Enhancement for Interfacial Energy Release Rate of Adhesive Layer in Fiber Metal Laminates using Taguchi Method (다구찌 기법을 적용한 섬유금속적층판 접착층의 에너지 해방률 강화에 대한 연구)

  • Kil, Min-Gyu;Park, Eu-Tteum;Song, Woo-Jin;Kang, Beom-Soo
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.249-255
    • /
    • 2016
  • The fiber metal laminates have been widely used at aerospace industry due to outstanding fatigue characteristic, corrosion resistance and impact resistance and so forth. The objective of this research is to establish the proper manufacturing variables for enhancing the interfacial energy release rate of fiber metal laminates using Taguchi method. The major variables of the manufacturing process are surface treatment, pre-specified temperature holding time and additional pressure. In order to determine the interfacial adhesive strength, the double cantilever beam and end-notched flexure tests were conducted. Afterward, Mode I and II energy release rates at various conditions were introduced signal-to-noise ratio with respect to each condition. Finally, the most efficient manufacturing variables are recognized using larger-the-better characteristic.

Artificial muscles: Non-Stoichiometry Nature, Sensing and Actuating Properties and Tactile Sensibility

  • Otero T.F.;Lopez-Cascales J.J.;Vazquez-Arenas G.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.118-122
    • /
    • 2005
  • Electro-chemo-mechanical devices or artificial muscles based on conducting polymers (CP) are presented as bilayers, CP/adhesive polymer, or as triple layers, CP/adhesive polymer/CP. Those soft and wet materials, working in aqueous solutions of a salt, mimic the composition of most organs from animals. Under electrochemical control, so working as new electrical machines, they produce continuous, reverse and elegant bending movements, mimicking those produce by animal muscles. By means of the current a perfect controls of the movement rate is attained giving soft and continuous movements. Muscles able to sense the chemical and mechanical conditions of work or muscle having tactile sense, as will be presented here, are being developed. All of them are founded on the non-stoichiometric nature of the soft and wet materials.

Joining of Polyethylene Polymer by the Ultrasonic Welding (초음파 용접을 이용한 폴리에틸렌 수지의 접합)

  • Lee, Chul-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.73-81
    • /
    • 1997
  • This study was to find the best adhesive condition comparing mechanical property in case of hot-melt adhesion using glue-gun, ultrasonic welding with adhesion and only ultrasonic welding in order to adhere thermoplastic resin of polyethylene (PE) in which reliable adhesion was resulted in case of ultrasonic welding with same materials of PE. The best welding condition were acquired at welding time 1 second, welding pressure 250kPa for PE-PE where welding time and welding pressure were increased in accordance with the increase of material strength. At the best ultrasonic welding conditions, bonding strength of PE-PE welding was about 21MPa of which material have tensile strength of 24MPa. Through the analysis of microscophic test for ultrasonic welding structure, it was distinguished between well welded structure with higher intermolecule flow and bad welded structure with lower flow, of which result is mostly correspond with the result of tensile strength test.

  • PDF

Fracture Characteristics Unidirectional Composite Single-Lap Bonded Joints (일방향 복합재료 single-lap 접합 조인트의 파괴 특성)

  • Kim Kwang-Soo;Yoo Jae-Seok;Jang Young-Soo;Yi Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.232-236
    • /
    • 2004
  • The fracture characteristics of unidirectional composite single-lap bonded joints were investigated experimentally and numerically. The effects of bonding method, surface roughness, bondline thickness and the existence of fillet on the failure characteristics and strength of bonded single-lap joints were evaluated experimentally. The failure process, failure mode and the behavior of load-displacement curve was apparently different according to bonding method. The failure load of the specimen co-cured without adhesive was definitely superior to other types of specimens but the specimens co-cured with adhesive film had a less strength than secondary bonded specimens. In the secondary bonded specimens, the lower value of surface roughness and existence of fillet improved the strength of specimens. The strain energy release rates calculated by geometric nonlinear finite element analyses and Virtual Crack Closure Technique for the secondary bonded specimens considering the three types of initial cracks - comer crack, edge crack and delamination crack - were consistent with the test results.

  • PDF