Browse > Article
http://dx.doi.org/10.5187/jast.2020.62.6.864

Anti-inflammatory effects of Lactobacillus reuteri LM1071 via MAP kinase pathway in IL-1β-induced HT-29 cells  

Kim, Tae-rahk (Center for Research and Development, LACTOMASON)
Choi, Kyoung-sook (Center for Research and Development, LACTOMASON)
Ji, Yosep (Advanced Green Energy and Environment, Handong Global University)
Holzapfel, Wilhelm H. (Advanced Green Energy and Environment, Handong Global University)
Jeon, Min-Gyu (Center for Research and Development, LACTOMASON)
Publication Information
Journal of Animal Science and Technology / v.62, no.6, 2020 , pp. 864-874 More about this Journal
Abstract
Lactic acid bacteria are well-known probiotics, conferring several health benefits. In this study, we isolated lactobacilli from human breast milk and identified Lactobacillus reuteri LM1071 (RR-LM1071) using 16S rDNA sequencing. We tested the hemolytic activity, biogenic amine production, and antibiotic susceptibility of this strain to assess its safety. RR-LM1071 was found to be negative for hemolytic activity and biogenic amine production, as well as was measured in susceptible level for antibiotics in the minimal inhibitory concentration (MIC) test. The adhesive properties of RR-LM1071 were higher than those of LGG in HT-29 cells, and showed a greater hydrophobicity than LGG in hexadecane solvent. Under inflammatory conditions, RR-LM1071 suppressed the mRNA expression of IL-6, TNF-α, and IL-4 produced in IL-1β-induced HT-29 cells. Our results suggest that RR-LM1071 is a safe and valuable probiotic that can be used for the treatment of inflammatory bowel disease.
Keywords
Probiotics; Safety; Adhesive; Lactobacillus reuteri; Human breast milk;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Al-Sadi R, Guo S, Ye D, Dokladny K, Alhmoud T, Ereifej L, et al. Mechanism of IL-1β modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation. J Immunol. 2013;190:6596-606. https://doi.org/10.4049/jimmunol.1201876   DOI
2 Steinbach EC, Plevy SE. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis. 2014;20:166-75. https://doi.org/10.1097/MIB.0b013e3182a69dca   DOI
3 Cominelli F, Pizarro TT. Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther. 1996;10 Suppl 2:49-53. https://doi.org/10.1046/j.1365-2036.1996.22164020.x   DOI
4 Lee J, Hwang KT, Park KY. Adhesion of lactic acid bacteria can modulate the secretion of cytokines on HT-29 colon adenocarcinoma cells. J Korean Assoc Cancer Prev. 2004;9:36-41.
5 Gross V, Andus T, Daig R, Aschenbrenner E, Scholmerich J, Falk W. Regulation of interleukin-8 production in a human colon epithelial cell line (HT-29). Gastroenterology. 1995;108:653-61. https://doi.org/10.1016/0016-5085(95)90436-0   DOI
6 Moon DO, Jin CY, Lee JD, Choi YH, Ahn SC, Lee CM, et al. Curcumin decreases binding of Shiga-like toxin-1B on human intestinal epithelial cell line HT29 stimulated with TNF-α and IL-1β: suppression of p38, JNK and NF-κB p65 as potential targets. Biol Pharm Bull. 2006;29:1470-5. https://doi.org/10.1248/bpb.29.1470   DOI
7 Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol. 2003;94:981-7. https://doi.org/10.1046/j.1365-2672.2003.01915.x   DOI
8 Silla Santos MH. Biogenic amines: their importance in foods. Int J Food Microbiol. 1996;29:213-31. https://doi.org/10.1016/0168-1605(95)00032-1   DOI
9 Ladero V, Fernandez M, Calles-Enriquez M, Sanchez-Llana E, Canedo E, Martin MC, et al. Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol. 2012;30:132-8. https://doi.org/10.1016/j.fm.2011.12.016   DOI
10 Gezginc Y, Akyol I, Kuley E, Ozogul F. Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem. 2013;138:655-62. https://doi.org/10.1016/j.foodchem.2012.10.138   DOI
11 [FEEDAP] EFSA panel on additives and products or substances used in animal feed. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012;10:2740. https://doi.org/10.2903/j.efsa.2012.2740   DOI
12 Polak-Berecka M, Wasko A, Paduch R, Skrzypek T, Sroka-Bartnicka A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie van Leeuwenhoek. 2014;106:751-62. https://doi.org/10.1007/s10482-014-0245-x   DOI
13 Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2012;78:2337-44. https://doi.org/10.1128/AEM.07047-11   DOI
14 Bang M, Yong CC, Ko HJ, Choi IG, Oh S. Transcriptional response and enhanced intestinal adhesion ability of Lactobacillus rhamnosus GG after acid stress. J Microbiol Biotechnol. 2018;28:1604-13. https://doi.org/10.4014/jmb.1807.07033   DOI
15 Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA. 2009;106:17193-8. https://doi.org/10.1073/pnas.0908876106   DOI
16 Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14:4280-8. https://doi.org/10.3748/wjg.14.4280   DOI
17 Giaouris E, Chapot-Chartier MP, Briandet R. Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. IntJ Food Microbiol. 2009;131:2-9. https://doi.org/10.1016/j.ijfood-micro.2008.09.006   DOI
18 Del Re B, Sgorbati B, Miglioli M, Palenzona D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol. 2000;31:438-42. https://doi.org/10.1046/j.1365-2672.2000.00845.x   DOI
19 Nishiyama K, Nakamata K, Ueno S, Terao A, Aryantini NP, Sujaya IN, et al. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins. Biosci Biotechnol Biochem. 2015;79:271-9. https://doi.org/10.1080/09168451.2014.972 325   DOI
20 de Vroome T, Martinovic B, Verkuyten M. The integration paradox: level of education and immigrants' attitudes towards natives and the host society. Cultur Divers Ethnic Minor Psychol. 2014;20:166-75. https://doi.org/10.1037/a0034946   DOI
21 Friedrich M, Pohin M, Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity. 2019;50:992-1006. https://doi.org/10.1016/j.immuni.2019.03.017   DOI
22 Mitsuyama K, Toyonaga A, Sasaki E, Ishida O, Ikeda H, Tsuruta O, et al. Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut. 1995;36:45-9. https://doi.org/10.1136/gut.36.1.45   DOI
23 Rajilic-Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38:996-1047. https://doi.org/10.1111/1574-6976.12075   DOI
24 Bene KP, Kavanaugh DW, Leclaire C, Gunning AP, MacKenzie DA, Wittmann A, et al. Lactobacillus reuteri surface mucus adhesins upregulate inflammatory responses through interactions with innate C-type lectin receptors. Front Microbiol. 2017;8:321. https://doi.org/10.3389/fmicb.2017.00321   DOI
25 Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449:811-8. https://doi.org/10.1038/nature06245   DOI
26 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65. https://doi.org/10.1038/nature08821   DOI
27 Moran NA. Symbiosis. Curr Biol. 2006;16:R866-71. https://doi.org/10.1016/j.cub.2006.09.019   DOI
28 Walter J, Britton RA, Roos S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4645-52. https://doi.org/10.1073/pnas.1000099107   DOI
29 Van Kemseke C, Belaiche J, Louis E. Frequently relapsing Crohn's disease is characterized by persistent elevation in interleukin-6 and soluble interleukin-2 receptor serum levels during remission. IntJ Colorectal Dis. 2000;15:206-10. https://doi.org/10.1007/s003840000226   DOI
30 Reinisch W, Gasche C, Tillinger W, Wyatt J, Lichtenberger C, Willheim M, et al. Clinical relevance of serum interleukin-6 in Crohn's disease: single point measurements, therapy monitoring, and prediction of clinical relapse. AmJ Gastroenterol. 1999;94:2156-64. https://doi.org/10.1016/S0002-9270(99)00344-5   DOI
31 Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185. https://doi.org/10.3389/fmicb.2016.00185   DOI
32 Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol. 2018;9:757. https://doi.org/10.3389/fmicb.2018.00757   DOI
33 Sotoudegan F, Daniali M, Hassani S, Nikfar S, Abdollahi M. Reappraisal of probiotics' safety in human. Food Chem Toxicol. 2019;129:22-9. https://doi.org/10.1016/j.fct.2019.04.032   DOI
34 LeBlanc JG, Chain F, Martin R, Bermudez-Humaran LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories. 2017;16:79. https://doi.org/10.1186/s12934-017-0691-z   DOI
35 Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria: a review. Int J Food Microbiol. 2005;105:281-95.   DOI
36 Kang MS, Yeu JE, Hong SP. Safety Evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic and genotypic analysis. IntJ Mol Sci. 2019;20:2693. https://doi.org/10.3390/ijms20112693   DOI
37 Nishiyama K, Sugiyama M, Mukai T. Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms. 2016;4:34. https://doi.org/10.3390/microorganisms4030034   DOI
38 Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol. 2008;74:4985-96. https://doi.org/10.1128/AEM.00753-08   DOI
39 Vastano V, Pagano A, Fusco A, Merola G, Sacco M, Donnarumma G. The Lactobacillus plantarum Eno A1 Enolase is involved in immunostimulation of Caco-2 cells and in biofilm development. Adv Exp Med Biol. 2016;897:33-44.
40 Lebeer S, Vanderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72:728-64. https://doi.org/10.1128/MMBR.00017-08   DOI
41 Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli nissle 1917 involve ZO-2 and PKCζ redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804-16. https://doi.org/10.1111/j.1462-5822.2006.00836.x   DOI
42 Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K. Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clin Exp Immunol. 2008;151:528-35. https://doi.org/10.1111%2Fj.1365-2249.2007.03587.x   DOI
43 Al-Sadi RM, Ma TY. IL-1β causes an increase in intestinal epithelial tight junction permeability. J Immunol. 2007;178:4641-9. https://doi.org/10.4049/jimmunol.178.7.4641   DOI