• Title/Summary/Keyword: adhesive bonding

Search Result 768, Processing Time 0.031 seconds

SHEAR BOND STRENGTH OF METAL BRACKETS BONDED WITH LIGHT-CURED ADHESIVE: AN IN VITRO COMPARATIVE STUDY (광중합 접착제로 접착된 금속 브라켓의 전단접착강도에 관한 연구)

  • Chang, Young-Il;Lee, Suhng-Jin
    • The korean journal of orthodontics
    • /
    • v.22 no.2 s.37
    • /
    • pp.289-296
    • /
    • 1992
  • The purpose of this study was to evaluate and compare the shear bond strengths and failure sites of metal brackets bonded with chemically cured adhesive and light-cured adhesive. 10 brackets were bonded on prepared enamel surfaces with $Transbond^{circledR}$ (Unitek/3M; U.S.A.) light-cured orthodontic adhesive and another 10 brackets were bonded with $Ortho-one^{\circledR}$ (Bisco:U.S.A.) chemically cured orthodontic adhesive. 24 hours after bonding, the Instron universal testing machine was used to measure the shear bond strengths. The failure sites were examined under streoscopic microscope. The results were as follows: 1 . The mean shear bond strength of metal brackets bonded with light-cured adhesive was lower than that of metal brackets bonded with chemically cured adhesive, but the difference was not statistically significant (p < 0.05). 2. Regardless of the type of adhesives, the brackets were failed primarily at the bracket base-adhesive interface. 3. Bonding of metal brackets with light-cured adhesive is considered to be clinically acceptable.

  • PDF

Impact of bonding defect on the tensile response of a composite patch-repaired structure: Effect of the defect position and size

  • N., Kaddouri;K., Madani;S.CH., Djebbar;M., Belhouari;R.D.S.G., Campliho
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.799-811
    • /
    • 2022
  • Adhesive bonding has seen rapid development in recent years, with emphasis to composite patch repairing processes of geometric defects in aeronautical structures. However, its use is still limited given its low resistance to climatic conditions and requirement of specialized labor to avoid fabrication induced defects, such as air bubbles, cracks, and cavities. This work aims to numerically analyze, by the finite element method, the failure behavior of a damaged plate, in the form of a bonding defect, and repaired by an adhesively bonded composite patch. The position and size of the defect were studied. The results of the numerical analysis clearly showed that the position of the defect in the adhesive layer has a large effect on the value of J-Integral. The reduction in the value of J-Integral is also related to the composite stacking sequence which, according to the mechanical properties of the ply, provides better load transfer from the plate to the repair piece through the adhesive. In addition, the increase in the applied load significantly affects the value of the J-Integral at the crack tip in the presence of a bonding defect, even for small dimensions, by reducing the load transfer.

Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

  • de Sousa, Jose Aginaldo Junior;Carregosa Santana, Marcia Luciana;de Figueiredo, Fabricio Eneas Diniz;Faria-e-Silva, Andre Luis
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.202-208
    • /
    • 2015
  • Objectives: This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods:Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (${\alpha}=0.05$). Results: Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05), while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05). Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Conclusions: Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

Physicochemical Characteristics Study on Wheat Starch Adhesive - Based on Wheat Starch Adhesive fermenting period less than two years- (소맥전분 풀의 이화학적 특성 연구 - 수침기간이 2년 이하인 풀을 중심으로-)

  • Chung, Yong-Jae;Kim, Min-Jeong;Nam, Seo-Jin;Jeong, Seon-Hye
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • In this study, wheat starch adhesive was investigated the shape and structure of starch, the difference in characteristics such as chemical composition according to the fermenting period of 2 years or less. The fermenting period of wheat starch adhesive is 1 month, 2months, 4 months,6 months, 1 year, 2years old. The wheat starch adhesives were investigated total sugar contents, protein contents, properties of gelatinization, pH, the bonding strength and also observed the surface of starch,. As a result, the longer the fermenting period, the increasing in total sugar contents and decreasing in protein contents. The particle shape and surface were similar regardless of the period. In addition, properties of gelatinization according to the fermenting period also could not see the difference. In pH of the adhesive, the longer the fermenting period, the near to neutral. The adhesive was high bonding strength in 4 months, but appeared a tendency to decrease from 6 months. The damage assessment through the UV degradation in regard to the papers applied the adhesive was accomplished. Color difference was no change except 1 month. The 4 months and 6 months' pH was each 5.0, 5.2. But it was near to neutral that the 12 months and 24 months' pH was each 5.7, 5.9.

Effects of filler addition to bonding agents on shear bond strength (FILLER함량이 BONDING AGENT의 전단접착강도에 미치는 영향)

  • Oh, Young;Oh, Myung-Hwan;Cho, Byeong-Hoon;Son, Ho-Hyun;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.44-53
    • /
    • 2002
  • 목적 : 최근 개발된 bonding agent 중 일부는 다양한 함량의 filler를 포함하고 있으며 filler의 첨가는 bonding agent의 기계적인 물성을 향상시킴으로써 접착력의 향상에 기여한다는 주장이 있다. 본 연구에서는 다양한 함량의 filler를 포함한 adhesive를 실험적으로 만들어, filler의 함량이 전단접착강도에 미치는 영향을 살펴보고 임상적으로 가장 적절한 filler의 함량을 알아보고자 하였다. 또 adhesive의 간접인장강도를 측정하여 adhesive의 기계적인 물성과 접착력과의 상관관계를 알아보았다. 방법 : 발거된 건전한 70개의 대구치를 투명 레진에 매몰하고 상아질면을 노출시켰다. 3M사의 Scotchbond Multipurpose의 etchant와 primer를 제조사의 지시대로 적용하고 1$\mu\textrm{m}$크기의 barium glass filler를 0, 5, 10, 15, 20, 30, 45wt% 포함하도록 실험적으로 제작한 adhesive를 도포한 후 레진을 충전하여 시편을 완성하였다. Instron으로 0.5mm/min의 속도에서 전단접착강도를 측정하고 그 단면을 입체현미경으로 관찰하여 파절의 양상을 확인하였다. Filler함량에 따른 adhesive의 후경을 측정하기 위해 상기한 방법으로 시편을 제작하여 주사 전자현미경으로 관찰한 후 Sigmascan을 이용하여 그 후경을 측정하였다. 또, 지름 4mm 높이 6mm의 원통형 시편을 제작하여 Instron로 간접인장강도의 측정을 시행하였다. 얻어진 결과는 Kruskal-Wallis test와 Mann-Whitney test를 시행하여 분석하였으며, 상관관계를 분석을 위해 Pearson Product Moment Correlation Coefficient를 구하였다. 결과 : 1) Filler함유량에 따라 전단접착강도는 유의할 만한 차이를 보였다(p<0.05). 2) Filler함량의 증가에 따라 전단접착강도는 유의하게 증가하여 15% 수준에서 가장 높은 갈(19.9$\pm$1.38Mpa)을 보였으며 20% 이상의 수준에서는 유의하게 감소하였다(p<0.05). 3) Adhesive의 간접인장강도는 20% 수준까지는 증가하는 양상을 보였으나 통계적 유의성은 없었으며(p>0.05), 30% 이상에서는 유의할 만한 감소를 보였다(p<0.05). 4) Adhesive의 후경은 0% 수준에서 5.97$\pm$1.23$\mu\textrm{m}$부터 45%수준에서 73.37$\pm$11.7$\mu\textrm{m}$까지 유의하게 증가하였다(p<0.05). 5) Filler함량에 따른 Adhesive의 간접인장강도와 전단접착강도는 상관관계가 없었다.

Effects of different primers on indirect orthodontic bonding: Shear bond strength, color change, and enamel roughness

  • Tavares, Mirella Lemos Queiroz;Elias, Carlos Nelson;Nojima, Lincoln Issamu
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.245-252
    • /
    • 2018
  • Objective: We aimed to perform in-vitro evaluation to compare 1) shear bond strength (SBS), adhesive remnant index (ARI), and color change between self-etched and acid-etched primers; 2) the SBS, ARI and color change between direct and indirect bonding; and 3) the enamel roughness (ER) between 12-blade bur and aluminum oxide polisher debonding methods. Methods: Seventy bovine incisors were distributed in seven groups: control (no bonding), direct (DTBX), and 5 indirect bonding (ITBX, IZ350, ISONDHI, ISEP, and ITBXp). Transbond XT Primer was used in the DTBX, ITBX, and ITBXp groups, flow resin Z350 in the IZ350 group, Sondhi in the ISONDHI group, and SEP primer in the ISEP group. SBS, ARI, and ER were evaluated. The adhesive remnant was removed using a low-speed tungsten bur in all groups except the ITBXp, in which an aluminum oxide polisher was used. After coffee staining, color evaluations were performed using a spectrophotometer immediately after staining and prior to bonding. Results: ISONDHI and ISEP showed significantly lower SBS (p < 0.01). DTBX had a greater number of teeth with all the adhesive on the enamel (70%), compared with the indirect bonding groups (0-30%). The ER in the ITBX and ITBXp groups was found to be greater because of both clean-up techniques used. Conclusions: Direct and indirect bonding have similar results and all the primers used show satisfactory adhesion strength. Use of burs and polishers increases the ER, but polishers ensure greater integrity of the initial roughness. Resin tags do not change the color of the teeth.

Effects of direct and indirect bonding techniques on bond strength and microleakage after thermocycling (직접 부착법과 간접 부착법이 열순환 후 부착강도와 미세누출에 미치는 영향에 대한 연구)

  • Ozturk, Firat;Babacan, Hasan;Nalcaci, Ruhi;Kustarci, Alper
    • The korean journal of orthodontics
    • /
    • v.39 no.6
    • /
    • pp.393-401
    • /
    • 2009
  • Objective: The purpose of this study was to compare the shear bond strength (SBS) of brackets and microleakage of a tooth-adhesive-bracket complex bonded with a direct and an indirect bonding technique after thermocycling. Methods: Fifty non-carious human premolars were divided into two equal groups. In the direct bonding group a light-cured adhesive and a primer (Transbond XT) was used. In the indirect-bonding group, a light-cured adhesive (Transbond XT) and chemical-cured primer (Sondhi Rapid Set) were used. After polymerization, the teeth were kept in distilled water for 24 hours and thereafter subjected to thermal cycling (500 cycles). For the microleakage evaluation, 10 teeth from each group were further sealed with nail varnish, stained with 0.5% basic fuchsin for 24 hours, and examined under a stereomicroscope. Fifteen teeth from each group were used for SBS testing with the universal testing machine and adhesive remnant index (ARI) evaluation. Data were analyzed using the Mann-Whitney U test, Chi-square test, and Fisher's exact test. Results: There were no statistical differences on SBS and microleakage between the two bonding techniques. The indirect bonding group had a significantly lower ARI score. Bracket failures were obtained between enamel-resin interfaces. Conclusions: The type of bonding technique did not significantly affect the amount of microleakage and SBS.

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.